Life Cycle Assessment Analysis of Various Active and Passive Acid Mine Drainage Treatment Options

Dr. James Stone Tyler Hengen & Maria Squillace South Dakota School of Mines & Technology Department of Civil and Environmental Engineering

© TemplatesWise.com

Acknowledgements

University Supervisors

- Dr. James Stone
 - South Dakota School of Mines & Technology, Rapid City, SD
- Dr. Aisling O'Sullivan
 - University of Canterbury, Christchurch, New Zealand

SOUTH DAKOTA

Funding Sources

- New Zealand Government
 - Technology New Zealand
 (Foundation for Research,
 Science & Technology)
- Solid Energy New Zealand Ltd
- Coal Association of New Zealand
- University of Canterbury
 - Department of Civil & Natural Resources Engineering

Project Location

- Stockton Coal Mine, New Zealand
- West Coast on the South Island
- New Zealand's largest open cast coal mine

McCauley et al (2010)

AMD Monitoring Sites

^{• 13} Sites

- 10 seep locations
- Effluent from 3 sediment ponds
- Primary water chemistry parameters
 - Dissolved metals
 - pH
 - Sulfate
 - Acidity
- Community agreed on compliance levels of pH≥4.0 and 1 mg/L Al 99% of the time

Manchester Seep Description

- Candidate site for assessing AMD treatment methods
- Reportedly not influenced by active or future mining

McCauley et al (2010)

	Median	Min	Max
Flow (L/s)	1.84	0.35	10.5
рН	2.8	2.5	3.3
DO (mg/L)	9.6	8.1	10.9
DO (% Saturation)	82	73	94
Eh (mV)	709	691	744
Calculated Acidity (mg/L as CaCO ₃)	426	88	728
Diss Fe (mg/L)	63	4.3	143
Diss Al (mg/L)	33	7.4	57
Sulphate (mg/L)	428	101	692

AMD Treatment Scenario Overview

- Passive Treatment Methods
 - Mussel Shell Bioreactor
 - Waste product in NZ from large fishery industry
 - Adds alkalinity and reduces metal concentrations
 - So cm 60 cm

- Active Treatment Methods
 - Lime Dosing
 - Lime Slaking Plant

Environmental analysis of treatment methods using LCA... What is LCA?

Mussel shells used as bioreactor substrate

McCauley et al (2010)

LCA History and Background

- Life Cycle Assessment (LCA) - approach to quantifying the environmental impacts of a scenario
- "Cradle to Grave"
 - Compile inventory
 - Evaluating potential impacts
 - Interpreting results to make informed decision

LCA Input Value Definitions

Functional Unit: kg acidity removed/day

Impact Category Selection and Functional Unit

- SimaPro 7.3 (Netherlands)
- Midpoint category selection:
 - Indicators chosen between inventory results and endpoints
 - Impact assessment translated into environmental themes
 - Less uncertainty
- Endpoint category selection:
 - Environmental relevance linked into issues of concern
 - Higher uncertainty- easier to understand and interpret

SimaPro Category Definitions

Midpoint Categories

- Climate Change
 - Change in weather patterns
- Terrestrial Acidification
 - Deposition of wet and dry acidic components

Endpoint Categories

- Damage to Human Health
 - Respiratory diseases
 - Cancer
- Damage to Ecosystems
 - Dying forests
 - Extinction of species

Bioreactor Scenario

McCauley et al (2010)

- Sulfate reducing environment in bioreactor lowers acidity and precipitates metal
- Dimensions: 32 m (w) x 40 m (l) x 2 m (d)
- Substrate: 30 vol. % mussel shells, 30 vol.
 % bark, 25 vol. % post peel, 15 vol. % compost
- AMD gravity-fed from sedimentation pond receiving Manchester Seep AMD
- Flow into bioreactor is 2.29 L/s
- Designed to remove 85.2 kg acidity as CaCO₃/day
- 16.9 year lifetime

Bioreactor Scenario Modifications

- Mussel shell bioreactor with modified transport
 - ½ transport distances for all materials
- Mussel shell bioreactor with process energy
 - Pump added for non-gravity fed AMD
- Modified substrate bioreactor
 - Volume of mussel shell substrate replaced by limestone
- Mussel shell leaching bed
 - Mussel shells only substrate included in bioreactor design

Lime-Dosing Scenario

McCauley et al (2010)

- Ultra-fine limestone (UFL) neutralizes
 acidity and precipitates metals from
 Mangatini stream
 - Finely ground limestone (CaCO₃)
 - Gravity fed slurry fed into stream
- Natural flow of Mangatini stream is 0.4 m³/s
- Treats 17,800 kg acidity as CaCO₃/day
- Consumes 11,000 tonnes UFL per year
- Only material inputs are ultrafine limestone and a prefabricated silo for storing the limestone

Lime Slaking Plant Scenario

http://www.aditnow.co.uk

• Lime slaking utilizes hydrated lime for AMD treatment

- Calcium oxide slaked with water
- Hydrated Lime: Ca(OH)₂
- EPA Design Manual: Neutralization of Acid Mine Drainage
- Designed using parameters from lime dosing scenario
- Consumes 6,200 tonnes hydrated lime/year
- Includes: Equalization basin, lime storage and feed system, flash mix tank, aeration tank, settling basin with sludge removal

Preliminary Climate Change Results

- Disposal for passive treatment buried in sanitary landfill
- Lime-dosing proved to have the least environmental effect

Preliminary Climate Change Bioreactor Network

Climate Change Results - Onsite Disposal

- Redesigned scenario for on-site disposal more realistic
- Significantly reduced passive treatment impacts

Climate Change Lime Slaking Network

Limestone vs. Quicklime Material Preparation

Crushed Limestone

- Process Energy
 - Crushing
 - Washing
 - Transportation by conveyor belt
- Heavy Machinery
 - 2 crushers
 - 2 sieves
 - 2 small silos

Quicklime

- 17x the process energy of crushed limestone
 - Crushing, milling, cyclone filtering, dedusting, storage,
- 10x the weight of heavy machinery
 - Crusher, roller mill, dedusting plant, cyclone, small silo

Terrestrial Acidification Results

Transportation Distances

Bark, Post Peel, Compost, Bedding Material Stockton Coal Mine

Concrete

Mussel Shells, Liner, Steel

Limestone, Hydrated Lime

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2012 Cnes/Spot Image

© 2012 Whereis® Sensis Pty Ltd 39°47'55.14" S 166°04'30.17" E elev -10279 ft

160 km: concrete

•

- 250 km: bark, post peel, compost, bedding material
- 400 km: Christchurch: mussel shells, liner, steel

Google earth

Eye alt 648.96 mi 🔘

 550 km: limestone, hydrated lime

100 Transport is the 90 main contributor to 80 % Contribution by Category damage to human health 70 in most 60 Disposal scenarios Process Energy 50 Construction Transport 40 Materials 30 20 **Bioreactor** uses waste 10 materials shows 0 Bioreactor - Bioreactor - Bioreactor - Mussel Shell Lime-Dosing Lime Slaking Bioreactor minimal Modified Purchased Modified Leaching Plant impact Energy Transport Substrate Bed

Endpoint Results - Damage to Human Health

Damage to Human Health (DALY)

Lime Dosing Damage to Human Health Network

Air emissions associated with articulated engine: carbon dioxide, nitrogen oxides, carbon monoxide, methane; minimal soil and water emissions

Endpoint Results - Damage to Ecosystems

100 90 **Process energy % Contribution/by Category** 0 0 0 0 0 0 0 0 0 larger contributor to bioreactor 60 Disposal versus lime 50 Process Energy dosing and lime Construction slaking Т Transport Materials 20 10 0 Bioreactor - Bioreactor - Bioreactor - Mussel ShellLime-DosingLime Slaking Modified Modified Plant Purchased Leaching Transport Energy Substrate Bed Damage to Ecosystems (species.yr)

Process Energy Breakdown

• Bioreactor with Purchased Energy

- Pumps AMD constantly
- 3822 kWh/kg acidity removed per day
- Lime Dosing
 - Pumps only chemical addition, AMD gravity fed
 - 83 kWh/kg acidity removed per day
- Lime Slaking
 - Pumps chemical addition and AMD
 - 911 kWh/kg acidity removed per day

Bioreactor: \$260/ kg acidity removed per day Lime Dosing: \$6/ kg acidity removed per day Lime Slaking: \$62/ kg acidity removed per day

Picture: earthmagazine.org Energy Costs: eia.gov

Conclusions

- Passive versus Active Treatments
 - Efficiency based on treatment abilities
 - Environmental impacts
- Limestone vs. quicklime
- Utilize locally sourced and waste materials
- On-site disposal vs. sanitary landfill
- Largest contributor- gravity fed AMD and chemical additions in placement of pumps
- Factors to consider- economic, social, environmental
 - Scope of LCA

Recommendations

- AMD Treatment approach dependent on a number of items:
 - Amount of AMD
 - Material costs
 - Available sources of alkalinity
 - Local waste materials
 - Site suitability for feeding AMD
- Use LCA as a piece of the puzzle to determine the best treatment option for the site

http://www.earthlife.org

Thank you for your time. Questions?

Contact Information: Dr. James Stone- james.stone@sdsmt.edu Maria Squillace- maria.k.squillace@mines.sdsmt.edu Tyler Hengen- tyler.hengen@mines.sdsmt.edu