Entries for October 1-15, 2025

Market/Commercialization Information

MID-PLUME GROUNDWATER REMEDIATION AT THE WALTON & LONSBURY SUPERFUND SITE, ATTLEBORO, MASSACHUSETTS (SNOTE) U.S. Army Corps of Engineers, North Atlantic Engineer Division, New England District, Concord, MA Contract Opportunities on SAM.gov, 2025

This special notice is to provide information for the Pre-Solicitation site walk for the mid-plume groundwater remediation at the Walton & Lonsbury Superfund Site in Attileboro, Massachusetts. The site walk is scheduled for Tuesday, November 25, 2025, at 1:00 PM EST. Participants should park in the main lot at Hawward Field, located at 79 North Avenue, Attleboro, Massachusetts, directly across the street from Walton Street and the project site. For any questions, please contact the Contract Specialist, https://dx.ap.ou/waykspeci/portact/Long/id/Tdf36483828.dcfbae1936ab60fdfviews

EPA WATER RFP (SOL)
U.S. Environmental Protection Agency, Region 9 Contracting Office, San Francisco, CA Contract Opportunities on SAM.gov 68HE0925R0015, 2025

This is a full and open competition under NAICS code 541620. EPA's Region 9 Contracting Office seeks a contractor to support implementation of EPA's responsibilities under the Clean Water Act and the Safe Drinking Water Act. Services will include response and support activities, preparedness and risk management, technical support, data management, technical support, data management, technical support, and quality assurance/quality control (QA/QC). During performance, the contractor shall provide all analyses, options, the contractive of the contractive of the contractor shall provide all analyses and the contractive of the contracti

Z -- FRANKLIN SLAG PILE SUPERFUND REMEDIATION PROJECT (SOL)
U.S. Army Corps of Engineers (USACE), Engineer Division North Atlantic, Philadelphia District, Philadelphia, PA Contract Opportunities on SAH-Jop W912E0E58AB002, 2025

This is a total small business set-aside under NAICS code 237990. USACE requires a contractor to remediate the Franklin Slag Pile Superfund site that contains slag material associated with smelting operations, located adjacent to the site. Th slag pile was combined and graded into a stable stockpile and encapsulated under an interim 40 mil HDPE geocomposite liner cap. The final ROD is to eliminate the future potential impact on the local community under this temporary remedy and allow this site to be redeveloped to improve the economy of the community. Najor work to be performed as part of the remediation include, but are not limited to: preparing preconstruction workplans; developing, obtaining approval for, and implementing a Maintenance of Traffic Plan; mobilizing and implementing the Security Plan; implementing the Finivinomental Protection Plan and Perimeter Air Monitoring Plan; conducting bench-scale testing; establishing containment and decontamination zones and setting up decontamination stations; installing underground utility crossovers at all vehicle entrances; abandoning groundwater monitoring wells; performing bench-scale testing; establishing containment and decontamination and setting up decontamination and setting up decontamination and setting up decontamination of the security of the security of the security plan is a security of the security of the

Cleanup News

TREES AND MICROBES AS SUSTAINABLE NATURE-BASED TREATMENT ON HYDROCARBONS AND MIXED WASTE SITES Cohu, C. J. Friemman, G. O'Tonie, R. Murrihy, and E. Guttman, I. RemTech 2025; Remediation Technologies Symposium, 15-17 October, Banff, Alberta, Canada, 33 slides, 2025

This presentation covers design methodologies and data from full-scale phytoremediation for several hydrocarbon and mixed waste installations utilizing Endophyte-Assisted Phytoremediation System (EAPS) technology and shows how they have successfully met sustainability goals. Synergistic bioremediation covids and innovative techniques were deployed to address several classes of contaminants, including olininated VOCs, pertoleum hydrocarbons, and 1.4-dioxare and mixed waste. Success with phytoremediation comes from careful assessment and selection of appropriate tree and microbe varieties. Data and lessors is believed to a finish the selection of appropriate tree and microbe varieties. Data and lessors is selected or appropriate tree and microbe varieties. In solid and groundwater, are the key factors in plant establishment on sites with phytotoxic concentrations. In addition, selecting site-appropriate tree varieties and providing them with consistent care is vital for establishment and long-term success on contaminated sites.

Stilless: https://desa.appropriate/picks/2055/10/CHRISS-COHLI.pdf.

10 YEARS OF NSZD APPLICATION IN AUSTRALIA - THE EVOLUTION FROM LNAPL ACTIVE REMOVAL TO NATURAL ATTENUATION Smit A and M Rousseau. I RemTech 2025: Remediation Technologies Symposium, 15-17 October, Banff, Alberta, Canada, 18 slides, 2025

IMPLEMENTATION, OPERATION, AND ADAPTATION OF A LARGE-SCALE, LONG-TERM ISCO REMEDIATION PROJECT Gallingri A and N Marchand | RemTech 2025: Remediation Technologies Symposium 15.17 Ortober Banff Alberta Canada 23 slides 2025

This presentation describes implications and challenges that were experienced throughout the design, implementation, and operation of a 20-year environmental rehabilitation strategy for a 200,000 m² industrial mining site located in eastern Canada. In its seventh year of operation, the project addresses legacy petroleum hydrocarbon contamination through a multidisciplinary remediation plan that integrates beemical, biological, and hydraulic containment technologies. Adding to its complexity, rehabilitation is being conducted at an operation industrial table with a dense, aging, and poorly obcumented network of underground infrastructure, including fine mains, electrical lines, sewer systems, and decommissioned fuel lines, requiring careful coordination and risk mitigation using GIS data and at horough approval industrial states, and proposed in the systems, and decommissioned fuel lines, requiring careful coordination and risk mitigation using GIS data and an abrorough approval and proposed in the systems, and decommissioned fuel lines, requiring careful coordination and risk mitigation using GIS data and an abrorough approval and proposed in the systems, and decommissioned fuel lines, equiling careful coordination and risk mitigation using GIS data and an abrorough approval and proposed in the systems, and decommissioned fuel lines, and the systems of the syste

Demonstrations / Feasibility Studies

PFAS DESTRUCTION BY A HAZARDOUS WASTE INCINERATOR: TESTING RESULTS
Troxler, W., W., Anderson, C. McBridg, J. Whitehead, M., Klingerman, J. Kumm, P. Challa Sasi, S. Yankay, M. Modiri, S. Corum, C. Adkins, E. Redman, C. Laush, S. Hall, A. Jensen, S. Waters, D. Spangler, S. Neal, T. Bales, M. Mills, P. Potter, E. Shields, W. Roberson, and S. Jackson. EPA GOM/R-25/172, 125 pp. 2025

This test program evaluated how effective incineration is in treating PFAS at a hazardous waste incinerator. For this effort, EPA scientists followed the procedure described in Appendix A of EPA's 2024 Interim Guidance on the Destruction This test program evaluated how effective incineration is in treating PFAS at a hazardous waste incinerator. For this effort, EPA scientists followed the procedure described in Appendix A of EPA's 2024. Interim Guidance on the Destruction and Desposal of Perfluence of the Procedure described in Appendix A of EPA's 2024. Interim Guidance on the Destruction and Desposal of Perfluence of Peace and Described Interior and Described Inter

SMOLDERING PFAS-IMPACTED SOILS: FROM LABORATORY TO FULL-SCALE APPLICATIONS

This project demonstrated a mobile, rapidly deployable treatment unit (STARxpress) designed to destroy PFAS in impacted soil using smoldering combustion at Joint Base Elmendorf-Richardson (JBER). The two-unit STARxpress system treated 440 cubic yards of PFAS-impacted soil at JBER in 10 batches, with all batches meeting Alaska cleanup levels for PFOS and PFOA, and some achieving levels below detection limits. The presentation provides an overview of the smoldering process, system design, and demonstration results below the provided and provided a

IN-SITU MICROBIAL TREATMENT TO REMEDIATE A HISTORICAL CRUDE OIL RELEASE WITHIN A WETLAND IN JASPER NATIONAL PARK, ALBERTA Ostrander, M. and H. Anderson. I RemTech 2025: Remediation Technologies Symposium, 15-17 October, Banff, Alberta, Canada, 27 slides, 2025

The conceptual site model for the Jasper National Park historical release site identified contaminants of concern, including PAHs and perfective my hydrocarbons (PHCs), which were confirmed in both soil and groundwater, covering a total surface area estimated at 7,625 m 2, largely situated within a remote weethand area. Developing a remedial strategy required consideration of the site's sensitivities, allelinges, and termedial objectives. Site-specific challenges included the lack of road access to the site, widespread soil and groundwater contamination, and working within a complex ecosystem. A remedial objector most of the equipment, supplies, and a fine the experiment perfective most of the equipment, supplies, and a fine the area of the site. Further microbial treatment was the optimal approach as it was considered low impact to the environment, feasible for a remote site, and site characteristics were suitable for the fernitorial experiment, esting demonstrated that a reduction of 50% to 70% in perforement hydrocarbon concentrations were observed at 90% of the site. Further microbial treatments are planned. The presentation focuses on the challenges limiting remedial objectors, the regulatory process, the remediation efforts conducted to date, including the methodology of implementing the microbial treatment, monitoring, Stides: <a href="https://linean.org/inen.

SMOLDERING TREATMENT OF PFAS: INVESTIGATION OF MASS BALANCE AND VOLUMETRIC SCALE UP FOR FIELD IMPLEMENTATION Harrison, B.G., D.W. Major, L.L. Kinsman, J.K. Brown, J.L.D. Gabayet, J.I. Gerhard, D.J. Patch, K.P. Weber, L. Chernysheva, G.M. Brown, K. Doudrick, A. Abarca-Perez, G.F. Peaslee, K.D. Pennell, and K.E. Manz. ACS Omega

Harrison, B.G., D.W. Major, L 10(28):30489-30500(2025)

A study investigated smoldering combustion to destroy PFAS and scaled the technology up from the lab to field implementation. The first phase consisted of bench-scale tests using calcium oxide (CaO) as a soil amendment in some of the test cases. For all test conditions, >99.9% PFAS removal was achieved. Post-treatment soil without CaO amendment was found to have a significant reduction in total fluorine concentrations, while the fluorine concentrations in soil with CaO amendments were similar following treatment. This suggests that fluorine emissions from smoldering treatment of PFAS are captured by the presence of the calcium ion (Ca 2*). New analytical methods were used to better characterize the mass balance of the system. The lab results were carried out in a pilot study using soil from a PFAS-impacted lets the treating 10 m² of soil were completed. Results agreed with the results from the lab phase. The results from both phases provide a greater understanding of the fate of PFAS when it is treated by smoldering and detail the first large-scale demonstration of smoldering treatment for PFAS-impacted soil. https://marchi.nim.nim.gov/articles/PBAC129468/Articles/PBAC129458. A study investigated smoldering cases. For all test conditions, >9

Return to ton

Research

RESEARCH BRIEF 368: NANOPARTICLES HELP PLANTS CLEAN UP FOREVER CHEMICALS National Institute of Environmental Health Sciences, Superfund Research Program, October 2025

SRP-funded researchers developed a novel material that enhances the ability of plants to premove PFAS from soil and water via phytoremediation. Ultrapprous mesostructured silica nanoparticles (UMNs) were developed and modified with chemical groups targeting the two main ways PFAS interact with other molecules. The UMNs were functionalized with chiorotrimethylsiline (TMS) to increase water repellence; polyethylene glycol (PEG), to improve dispersal in water and keep the provided of the prov

INVESTIGATION OF A NOVEL PROTEIN-BASED IMMOBILIZATION PROCESS FOR PFAS CONTAMINATED SOILS McKernan, J.L., E. Barth, K. Dasu, D. Cutt, S. Hartzell, J. Lilly, K. Sims, D. Siriwardena, and E. Kaltenberg, I Total Environment Engineering 4:100031(2025)

An innovative remediation strategy was explored using protein-based materials as chemical stabilization sorbents alongside cement-based solidification for PFAS-contaminated soil. Lower-cost, natural protein-rich materials (hemp seed meal, blood meal, and rendered slaughterhouse waste) were evaluated against GAC for sorption capacity of six PFAS (PFOA, PFPOS, PFHxA, PFBS, 82 FTS, and PFNA) typically associated with AFFF. Sorption studies revealed blood meal had substantial PFAS binding capacity, though less than GAC, with longer-chain PFAS compounds exhibiting higher sorption excross all sortion (sorption) less (sAC significantly reduced PFAS londing even at elevated pt], indicating compatibility with cement-based solidification, in soil stabilization, in soil stabilizati

days) after introduction, could be cost-effective alternatives for PFAS remediation. Further research is needed to assess long-term stability and suitability, optimize processes, and evaluate field-scale applicability

VARIABILITY AND SCALE DEPENDENCE OF HYDRAULIC CONDUCTIVITY FOR HANFORD SITE SAND AND GRAVEL AQUIFERS Khaleel R | Groundwater 63/5):790-811/2025)

A comprehensive compilation of a hydraulic conductivity (K) database (over 800 measurements) collected over the past seven decades is presented that encompasses test volumes ranging from lab to field scales for two principal sedimentary units at the Hanford site in south-central Washington State. While both units are gravel-dominated, the geometric mean K of the Hanford formation is orders of magnitude higher than that of the Ringold Formation for the permeameter and pumping lest data. In contrast, the In K variance across test volumes shows only moderate variantion between the two units. Analysis of K values across different support scales revealed across different support cales revealed across detered permeation for the Engold exhibits scale-invariant behavior at field scale. The differences are from their distinct depositional processes, while the Ringold exhibits scale-invariant behavior at field scale. The difference sarries from their distinct depositional processes, while the Ringold exhibits cale-invariant behavior at field scale. The difference sarries from their distinct depositional processes, while the Ringold exhibits cale-invariant behavior at field scale. The difference sarries from their distinct depositional processes, while the Ringold exhibits acceleration of the variance across different support and the sarries of the scale dependent K variability. The study underscore in unconsciolated stand and gravel adjusters is common but not universe. Calibrated inverse modeling of regional groundwater flow yelds high K estimates stand and processes. A support model-calibrated stand and gravel as a support model calibrated from the comprehendable and the sarries of the Hanford and Ringold formations.

A support model calibrated stand and gravel as a support model calibrated high K estimates for the Hanford formation of the Hanford and Ringold formations of the Hanford and Ringold formations.

REFINING PAH AND PCB BIOAVAILABILITY PREDICTIONS IN INDUSTRIAL SEDIMENTS USING SOURCE-FINGERPRINTING, PARTICLE SIZE, AND BULK CARBON, PUGET SOUND, WASHINGTON Conn, KE., A.R. Spanjer, and R.K. Takesue. Marine Pollution Bulletin 22(2(Part 1):118634(2025)

Nearshore marine sediments in a Puget Sound industrial embayment were contaminated with PAHs, PCBs, and DDTs from sources that included creosote, industrial oil and tar waste, and a landfill. Elevated concentrations were confined to a ~300-m shoreline buffer in the industrial waterfront, suggesting high site fidelity and limited along-shore or offshore transport. Total PAH concentrations approximately doubled when including alkylated compounds. The industrial sediments approximately about the concentrations in a provided charged concentrations in a provided charged concentration in the conc

MINERALIZATION OF CAPTURED PERFLUOROOCTANOIC ACID AND PERFLUOROOCTANE SULFONIC ACID AT ZERO NET COST USING FLASH JOULE HEATING
Scotland, P., K.M. Wyss, Y. Cheng, L. Eddy, J.L. Beckham, J. Sharp, Y. Chung, C.H. Choi, T. Si, B. Wang, J.A. Donoso, B. Deng, Y.-Y. Shen, S.G. Zetterholm, C. Griggs, Y. Han, M. Tomson, M.S. Wong, B.I. Yakobson, Y. Zhao, and J.M. Tour. I Nature Water 3:486-496 (2025)

A rapid electrothermal mineralization (REM) process was developed to remediate PFAS-contaminated soil. With environmentally compatible biochar as the conductive additive, the soil temperature increases to >1000°C within seconds by current pulse input, converting PFAS to calcium fluoride with inherent calcium compounds in soil. This process is applicable for remediating various PFAS contaminants in soil, with high removal efficiencies (>99%) and mineralization ratios (>90%). While retaining soil particle size, composition, water infiltration rate, and cation exchanged capacity. REM facilitates an increase in exchangeable nutritient supply and arthropod survival in soil, rendering it superior to the time-consuming calcination approach that severely degrades soil properties. REM is scaled up to remediate soil at 2 kg/ batch and is promising for large-scale, onsite soil remediation. Life-cycle assessment and techno-economic analysis demonstrate REM as an environmentally finendly and economic process, with a significant reduction of energy consumption, greenhouse gas emission, water consumption, and operation cost, when compared to existing soil remediation practices.

General News

STRATEGIC DELINEATION AT PER- AND POLYFLUOROALKYL SUBSTANCE (PFAS) -CONTAMINATED SITES: A FRAMEWORK COMBINING SOURCE IDENTIFICATION, BACKGROUND ASSESSMENT, AND PLUME MIGRATION INSIGHTS FOR REMEDIAL INVESTIGATIONS Modif, M., F. Torres, L. Flores, and R.H. Anderson. Remediation 36(1):e700400(2025)

A conceptual and systematic framework is essential for conducting a remedial investigation for PFAS, especially considering growing knowledge related to the novelty of their fate and transport and ubiquity in the environment. To address this need, at least as it pertains to defining the nature and extent of contamination, this article summarizes various methods presented to date and recommends a standard of practice that balances trade-offs between technical rigor and cost as a systematic quide for practitioners consistent with the state of the science.

RAPID EVIDENCE ASSESSMENT OF PFAS INCINERATION AND ALTERNATIVE REMEDIATION METHODS UK's Environment Agency Scientist Group report, 181 pp, 2025

This review assessed the effectiveness, feasibility, and environmental suitability of current and emerging technologies for treating PFAS, with a focus on high-temperature incineration. It also considered alternative PFAS remediation technologies for their practical feasibility, treatment performance, and environmental affects. Knowledge in three areas is described: (I) the operational conditions required for consistent and near-complete PFAS mineralization; (ii) the formation and environmental fate of products of incomplete combustion (PICs) during HTI; and (iii) the efferences of current envisions and residue monitoring practices. The review aims to build a strong evidence base to support shaping risk prevention strategies; provide practical insights for industry stakeholders and inform future regulatory strategy, operational decision-making, and infrastructure planning, in response to tightening UK and intermational restrictions on PFAS use and disposal. <a href="https://linear.purple.com/linear.purple

NON-AQUEOUS PHASE LIQUIDS IN THE SUBSURFACE: OVERLOOKED LONG-TERM SOURCES OF PFAS? Ford, J., J. Field, C. Heron, and S. Park. Environmental Science & Technology 59(40):21379-21381(2025)

AFFF used to manage hydrocarbon fires at airports, refineries, fuel terminals, and fire training areas led to the co-release of PFAS and LNAPL at numerous sites globally. PFAS partitioning into bulk LNAPL under unsaturated conditions. As a result, existing research does not provide sufficient information to develop effective remedial solutions targeting PFAS in groundwater downgradient of PFAS-impacted LNAPL. More research is needed to design appropriate remedial systems, especially given the low groundwater standards for PFAS. In addition to considering the presence of petroleum co-contaminants, the following information related to PFAS-impacted LNAPL should be known: (1) an estimate of the total mass of PFAS, in particular, PFAS with applicable regulatory standards; (2) the mass flux of PFAS compounds; and (3) the mass of precursor compounds that may transform into regulated PFAS, area contaminants, east sonital individual to 12 to 12 to 12 to 13 to

BUILDING A ROBUST LCSM FOR REMEDIATION DECISION-MAKING: NEXT-GENERATION TOOLS
Furbacher, P., L. Wu, E. Haack, T. Mafa-Attoye, D. Obregon Alvarez, K. Dunfield, J. Smith, G. Scarzella, and C. Harris. | RemTech 2025: Remediation Technologies Symposium, 15-17 October, Banff, Alberta, Canada, 39 slides, 2025

An LNAPL-Conceptual Site Model (LCSM) currently in development integrates microbial community traits and degradative capacity with quantification of compositional weathering, cumulative degradation rates, LNAPL mobility, and vertical and horizontal gradients in overburden and bedrock facies. It integrates multiple advanced techniques, including unsupervised learning, to interpret generated datasets:

- Natural source zone depletion rates calculated using soil gas gradients.
- LNAPL Compositional Change and Cumulative LNAPL Mass Loss: use of high-resolution GC-MS compositional analysis with Principal Component Analysis to identify patterns and extent of weathering. Cumulative LNAPL Mass Loss was estimated when no single compound could serve as a biomarker.
- Probing PHC biodegradation: Coupling Compound-Specific Isotope Analysis (CSIA) with microbial community composition and functional potential to support a mechanistic understanding of the observed changes in PHC composition.

Transmissivity Testing: used to identify those hydrogeological units from which hydrogeological values are to a second or the second of the se

The Technology Innovation News Survey welcomes your comments and suggestions, as well as information about errors for correction. Please contact Michael Adam of the U.S. EPA Office of Superfund and Emergency Management at adam uninhardigena one or (703) 399-4268 with any comments, suggestions, or corrections.

Mention of non-EPA documents, presentations, or papers does not constitute a U.S. EPA endorsement of their contents, only an acknowledgment that they exist and may be relevant to the Technology Innovation News Survey audience