Mechanistic investigation into the uptake and translocation of weathered persistent organic pollutants from soil by *Cucurbita* species

Jason C. White, MaryJane Incorvia Mattina, Brian D. Eitzer, Zakia D. Parrish, Mehmet Iselyen, and Martin P.N. Gent

The Connecticut Agricultural Experiment Station

Why look at Persistent Organic Pollutants?

- They persist for decades
- Likely mutagenic, estrogenic, carcinogenic effects
- Bioaccumulation, biomagnification
- Other remediation strategies are ineffective due to high degree of sequestration; plants should not accumulate them

Uptake and translocation of chlordane from soil by zucchini and cucumber

Uptake and translocation of weathered p,p'-DDE by selected plant species

Uptake and translocation of weathered PCBs from soil (105 µg/g) by 4 plant species

Average PAH content (ng/g) in roots and stems of 3 cucurbits grown in an MGP soil (37 μ g/g)

Tissue	Species	3 Ring	4 Ring	5 Ring	6 Ring
Roots	Zucchini	1800 A	5200 A	3000 A	4100 A
	Cucumber	350 B	970 B	540 B	640 B
	S. Squash	230 AB	520 B	51 C	0.00 B
Stems	Zucchini	560 A	1000 A	59 A	34 A
	Cucumber	18 A	18 A	0.00 A	0.00 A
	S. Squash	230 A	140 A	0.00 A	0.00 A

The C. pepo ssp pepo system

- C. pepo ssp pepo is unique in 2 areas-
 - 1. *Ex planta* Release and uptake of a highly sequestered residue from soil to roots
 - 2. *In planta* Translocation of a hydrophobic residue from roots to shoots
- For 1., root exudate-mediated soil matrix deconstruction
- Low molecular weight organic acids that scavenge nutrients inadvertently increase the bioavailability of weathered POPs
- For 2., ????

Schematic of DDE supply system

DDE accumulation in cucurbits under hydroponic conditions. Plants were supplied DDE at 2ng/ml at a rate of 2.6 ml/min

Species	Days of exposure	Root (ng/g)	Stem (ng/g)	Petiole (ng/g)	Leaf (ng/g)
Cucumber	8	39,800	100	ND	200
	14	72,400	200	ND	200
Zucchini	8	23,900	1,000	500	800
	14	30,900	2,000	1,000	400

Rhizotron studies: in situ analysis of root exudates and rhizosphere pore water

We can collect root exudates directly from the root or from the rhizosphere

Organic acids on <u>quartz fiber filters</u> in contact with the roots of 3 cucurbits and in non-vegetated soil

Organic acids in <u>rhizosphere pore water</u> of 3 cucurbits and in non-vegetated soil

Amount of chlordane in the rhizosphere pore water of 3 cucurbits and in non-vegetated soil

Concentration of select elements in the pore water of 3 cucurbits and of non-vegetated controls

Collection of Xylem Sap

- -- Sever plant stem > 1 cm above soil surface
- -- Allow sap to bleed for 1-2 minutes, wipe cut surface
- -- Collect sap via capillary action
- Keep sap cooled throughout timed collection
- -- Extract POPs from aqueous sap via SPME
- -- Desorb SPME onto chiralGC column interfaced to ITD

Concentration in of DDT and metabolites in the xylem sap of 3 cucurbits

Concentration of other POPs in the xylem sap of 3 cucurbits

Rate of DDE Flow in the Xylem Sap of 3 Cucurbits

Rate of Chlordane Flow in the Xylem Sap of 3 Cucurbits

Concentration of elements in xylem sap of 3 cucurbits

Conclusions

- *C. pepo* ssp *pepo* uniquely phytoextracts significant quantities of weathered POPs
- The mechanisms are somewhat non-specific, as widely different contaminants are accumulated to varying extents, including DDE, chlordane, PAHs, PCBs, and dioxins
- This is not a specifically evolved ability; POPs are entering on pre-existing physiological systems, unique patterns of nutrient acquisition via LMWOA exudation being one likely candidate
- The mechanism of intra-plant translocation of hydrophobic organic compounds is under investigation
- Elucidating these mechanisms is of interest on several fronts, including development of a novel phytoremediation system

Acknowledgements

- Dr. Xiaoping Wang
- Dr. Wen-Yee Lee
- Dr. Neil Schultes
- Lydia Wagner
- Bill Iannucci-Berger
- Craig Musante
- Terri Arsenault
- And...

This research is funded by

U.S. EPA - Science To Achieve Results (STAR) Program

Grant #

R829405, R828174