

What is phytostabilization?

- Remediation technology uses <u>native</u> plants to:
 - Immobilize contaminants in soil through adsorption and precipitation, rhizosphere
 - Use plant roots to prevent migration via:
 - Wind erosion
 - Water/soil erosion
 - Leaching
 - Safe to wildlife
- EPA, Introduction to Phytoremediation

EPA/600/R-99/107

Why Phytostabilization?

- BLM has thousands of AML sites, limited \$
- Traditional remediations excavate waste and haul to a disposal site
- Very costly to handle and transport thousands of cubic yards
- Need in-situ technology
- Sites might be reclaimed in-situ at 1/10 of the cost and meet environmental requirements

Applications of Science Grant

- NSTC directing demonstration projects to test phytostabilization at BLM mining sites
- Selected 3 sites in different states/ecoregions
 - Keating Tailings site in northern Rockies
 - Boston Mill site in SE Arizona
 - Perry Canyon site in Great Basin
- Cooperative Ecosystem Studies Units (CESUs)
 University agreements

CESU Partners

- Keating: Montana State University
 - Reclamation Research Unit
- Boston Mill: University of Arizona
 - Environmental Science Laboratory
- Perry Canyon: University of Nevada -Reno

Work Scope

- Establish test plots on tailings
- Characterize chemistry
- Prescription for soil amendments
- Construct test plots, amend and seed
- Test plant growth parameters, metal uptake, toxicity

Keating Test Plots

- Tailings chemistry: pH 4.1-5.6;
 - As, Pb, Cu, Zn in 300-1000 mg/kg total metals range
 - Water extractable Cu, Zn in the 30-300 mg/L range
- Replicated experimental plots 10x20' installed 9/03
 - 4 offsite control
 - 4 onsite control
 - 4 onsite treatment (18") based on sampling
 - 63-150 lbs Ca(OH)₂
 - 300-400 lbs CaCO3
 - 2250 lbs compost (upper 6")
 - Seeded northern wheatgrasses, fescues, forbs
- Fenced to exclude animals, signed.

Seedling Density Results, June

	Mean Seedling	
	Density (#/m²)	SD
Offsite Control	460	176
Onsite Control	373	137
Onsite Treated	257	123

Mean Cover Results, July

	Mean % Cover	SD
Offsite Control	52.6	11.9
Onsite Control	16.4	9.4
Onsite Treated	53.8	9.4

Next, we analyzed plants for metals:

- Composite leaf and stem samples collected for each plot and sent for metals analysis
- Onsite treated plots reduced Cd, Cu and Zn concentrations by 59%, 26, and 63% respectively, compared to onsite control plots
- Onsite treated plots statistically the same as background
- Comparison to published safe foliage toxicity levels show no exceedances except slightly for Cd

Plant Tissue Metals Results, mg/kg Keating Tailings

	As	Cd	Cu	Pb	Zn
Offsite	<4	<0.5	6.3	<4	19.8
Onsite Treated	<4	1.3	10.3	<4	60.0
Onsite Control	<4	3.1	14	<4	161.5
Safe level NRC, 1980	50	0.5	100	30	1000

Boston Mill Case Study

Similar project

Chihuahuan desertSan Pedro River NRCA

Biodiversity - refuge

Results of research were used in Engineering Evaluation/Cost Analysis e.g. treatability study Restoration Plan in progress by U of A

Wall plot area divided into eight equal plots, and one random point chosen in each plot for transplant plot locations

- Characterization:
 - pH 9.0
 - Pb, Zn, 5000-30,000 ppm
 - Seeded BigSacaton, atriplex

On-site treatments (random 3m x3m plots within larger plots)

- 1 SPWR seed, mulch
- 2 Control, no treatment
- 3 SPWR seed, rake
- 4 SPWR seed, mulch with mesquite litter, rake
- 5 SPWR seed, mulch with compost, rake
- 6 SPWR seed, mulch with compost, dig/chisel
- 8 ATCA transplants, irrigate
- 9 ATCA transplants, mulch with compost, irrigate

Results

- Sacaton seeds failed to germinate
- Atriplex plantings survived and grew
- Sacaton germinated and propagated in greenhouse and replanted onsite
 - 80% survival
- Metals accumulation results:
 - Sacaton grass uptake about 1/10 of shrubs
 - Wildlife protection
 - Food chain accumulation modeled for ecological restoration
 - Indicates cleanup needed for Cu and Pb

Metals Bioaccumulation Results, mg/kg Boston Mill

Metal	Safe forage*	[Plant]	[Soil]	P/S	[Insect]	I/S
As	50	6.4	737	0.009	1.88	0.002
Cu	100	23.2	1698	0.014	137.9	0.081
Pb	30	127.5	8956	0.014	45.9	0.003
Zn	1000	92.0	4446	0.02	198.8	0.029

Ecological Risk Model Boston Mill

Units in mg/kg concentration. Sparrow units are safe dietary intake.

Bioavailability

- In-vitro bioaccessibility for lead ~80% (Ruby et al, ES&T)
- Work of Sally Brown and others (JEQ) with compost shows ~ 80% bioavailable
- Net reduction in bioavailability to sparrow 50%

Cleanup Levels

- Used model to back-calculate cleanup levels using phytostabilization:
 - not accounting for bioaccessibility, Pb cleanup level for site would be 1719 mg/kg
 - with bioaccessibility & credit for providing compost, Pb cleanup level 2400 mg/kg
- Ecological restoration plan in progress
 - featuring removal or capping of hotspots
 and phytostabilization <2400 ppm Pb

Future work

- Want to continue to monitor plant production and metals uptake,
- Identify key western native range plants for phytostabilization,
- Install lysimeters to evaluate leaching.