Measuring Effectiveness of Phytoremediation for a TCE-Contaminated Groundwater Plume Using Sap Flow Instrumentation

Third International Phytotechnologies
Conference Atlanta, GA
April 2005

Presentation Plan

- Site Setting and History
- Monitoring Methods
- Sap Monitoring Results
- Conclusions

Site Setting and History

Portsmouth Uranium Enrichment Facility

Site Location

Plant Construction 1952 - 1956 Uranium Enrichment

Production Ceased - 2001

- 1990-1993 RCRA
 Facility Investigation identified five separate groundwater TCE plumes
- 1994-1997 Corrective
 Measures Study
 developed alternatives
 for remediation
 - –Phytoremediation selected for two plumes
 - X-740 and
 - X-749/X-120

X-740 History

- 1952-1956 Construction Switchyard (likely source)
- 1982-1992 X-740 Waste Oil Handling facility operated
- 1999 Phytoremediation System installed

X-740 Phytoremediation System

- Installed 113 8 in. dia. sand-filled borings 30+ ft to bedrock
- Planted 240 Trees in 2 ft wide trenches excavated 10 ft deep
- Remaining 526 trees planted in 2 ft diameter 10 ft deep borings
- Total Trees Planted 766

Installing Trenches at X-740
Phytoremediation Area

First leaves appear by 6/3/99

(one week after planting)

X-740 Tree Growth Some trees are 6 feet tall by 8/3/99 (9 weeks after planting)

Same tree on 10/27/99
(22 weeks after planting)

Same tree over 25 ft tall by 6/6/01

(two years after planting)

Same tree 7/3/03 (five years after planting)

March 2005 Tree Diameter

★ More than 10 cm ★ Between 3 and 10 cm ★ Less than 3 cm ★ Dead

X-749/X-120 Overview

- Three likely source areas: X-749 Landfill, X-120, Old Paint Shop
- 2002-2003 Phytoremediation System installed

Water vapor is transpired through leaves - ultraviolet light degrades volatile contaminants The tree degrades contaminants into nontoxic forms **Nutrient Enriched Ground Surface** Root system provides oxygen, sugar, and enzymes that help break down contaminants in the ground Minford/Fill Sand layer at bottom of trench Sand filled boring Gallia TCE contaminated groundwater flows up to trench

X-749/X-120 Trench Planting Design

- Installed 1500+ 8 in. dia. sand-filled borings 25+ ft to bedrock
- Planted over 3300 trees in 2 ft wide trenches 10 to 15 ft deep

X-749/X-120 Phytoremediation System

Phytoremediation System covers over 21 acres

Monitoring Methods

Phytoremediation System Monitoring Tools

- Collect monitoring well data
 - Water levels
 - Analytical

Phytoremediation System Monitoring Tools

- Collect tree core samples
- Collect transpired stem gas

Phytoremediation System Monitoring Tools

- Collect weather data
- Collect soil moisture

Phytoremediation System Monitoring Dynagage Sap-flow Collars

 Measures change in temperature as sap flows past heated collar

Phytoremediation System Monitoring Thermal Dissipation Probe (TDP)

 Measures temperature dissipation between a heated probe and a reference probe

Objectives of the Sap Flow Monitoring

- 1. Develop hydrologic budget
 - Determine sap flow relative to tree diameter
 - Determine sap flow relative to weather (ET)
 - Determine groundwater usage for plantation
- 2. Refine MODFLOW model input to more accurately predict remedial progress
- 3. Determine monitoring plan for next season at X-740 and adjust for X-749/X-120 area

Sap Flow Data Collection

Using Dynamax Flow32 System

Sap Monitoring Results

Evapotranspiration

May 29, 2004-June 5, 2004

Sap Flow Comparison

Putting It All Together

Measure Test Trees Cross-Sectional Areas

Measure Average
Daily Sap Flow for
Test Trees

Measure Stand Trees Cross-Sectional Area 705 Trees averaging 61.9 cm²

Sap Flow/Stem Area = 0.203 L/cm²/day

Indexing to Stand - Trunk
Cross-Sectional Area
61.9 cm² x 0.203
L/cm²/day = 12.6 L/day

Putting It All Together (cont.)

Measure Trees/Land Area 3m x 3m and 6m x 3m result in 877 trees/ha Sap Flow/Land Area 12.6 L/d x 877 trees = 11,000 L/ha/d (1.1 mm/day)

Measure Weather
Station ETo
4.4 mm/day

Index Sap Flow / ETo = K_C
Crop Coefficient
1.1 mm/d / 4.4 mm/d = 0.25

The values shown above are averaged from July 23 through August 29, 2004 data.

Modified from Dynamax

Apply Crop Coefficient For Seasonal Water Use Tot. seasonal ET x K_c 858 mm x 0.25 = 215 mm (2,150,000 L/ha)

Conclusions

Conclusions

- Sap flow monitoring quantifies and adds confidence to remediation predictions
- Trees in X-740 Phytoremediation Area remove 11,000 liters of water/hectare/day (1176 gal/acre/day)
- 3. Total water consumption during 2004 growing season is 2,146,000 liters/hector (229,000 gal/acre)
- Results and experience from X-740 may be used to refine assumptions and approach at X-749/X-120 area

Future Work

- Continue sap flow monitoring to determine groundwater usage by the trees
- Conduct soil boring program to determine root extent
- 3. Collect additional tree core samples
- 4. Finalize hydrologic budget to determine groundwater extraction rate
- Update groundwater flow model to better predict remediation

Acknowledgements

- Organizations
 - DOE, Ohio EPA, Bechtel Jacobs Company LLC, Pro2Serve

Authors

- Russ Vranicar (DOE)
- Maria Galanti (OEPA)
- John Sokol & Sandy Childers (BJC)
- Dave Rieske, Joe Ritchey, Steven Thompson (P2S)

Contributors

- Michael van Bavel (Dynamax)
- Joel Burken (University of Missouri-Rolla)