Initial Success in Design and Modeling of a Landfill Cover using *Salix* on the Solvay Waste Beds in Syracuse, NY

Presented at the Third International Phytotechnologies Conference April 20-22, 2005 Atlanta, GA

D. Daley¹, T. Volk², A. Johnson¹, J. Mirck², L. Abrahamson²

- ¹ Faculty of Environmental Resources and Forest Engineering
- ² Faculty of Forest and Natural Resources Management State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 www.esf.edu

Presentation Outline

- Site history
- Project goal and objectives
- Vegetation selection and management
- Model selection and calibration
- Summary

Site History

Solvay Process Company Facility and Erie Canal, early 1900s

- Soda ash manufacturing using the Solvay process (1887 1986)
- Raw materials locally available
 - limestone, brine (NaCl) and water
- 1907 Solvay began operation of settling basins along Onondaga Lake
- Process residues discharged as a slurry (5% solids)

Site Location

Solvay Process Residues

- Waste Beds 9 to 15
 - 15 to 21 m deep
 - 270 ha (662 acres)
- Primarily a non-hazardous mixture of calcium, magnesium and sodium compounds
- Stressful growing conditions in shallow soil (<1m depth)
 - pH (8.0 12.3)
 - Electrical conductivity (0.5 – 9.2 dS/m)
 - Organic matter (0 3.9%)

Waste Beds 13 - 15

Project Goal and Objectives

- Determine the feasibility of using willow shrubs as part of a multipurpose landfill closure project.
 - Screen varieties suitable for wastebed environment.
 - Evaluate transpiration by willow shrubs.
 - Model the effect of evapotranspiration on leachate generation.

- Evaluate the feasibility of large-scale willow biomass crop production on the waste beds.
- Determine the value of the willow biomass crops for green fuel, bioproducts and recreation.

Willow Biomass Crop Management Challenges

Water:

- Select willow varieties that are productive on this site
- Promote evaporation and transpiration to decrease deep percolation (leachate generation)
 - Vegetation interception
 - Low water use efficiency
 - Planting density and design
 - Understory vegetation management

Soils:

- Overcome harsh growing conditions
- Incorporate organic matter to :
 - Enhance survival, growth and productivity
 - Improve soil water availability and capacity
 - Provide long-term beneficial use option for generators of biosolids and organic mulch

Vegetation Selection

Naturally established willow and poplar on the Solvay waste beds.

Why willow?

- one of the first woody species to establish naturally
- tolerant of harsh conditions
- high transpiration rates
- high growth rates
- genetic diversity

Greenhouse Screening Trials

Greenhouse screening trial of 40 willow and hybrid poplar varieties.

- Screened 40 varieties of willow and hybrid poplar from SUNY-ESF collection
- Used biosolids amended waste, unamended waste and a control
- Used aboveground and belowground growth results to select 10 varieties to test in field trials

Growth and Yield Trials

First-year growth of willow on biosolids-amended Solvay waste

- Two plots (2004)
 - biosolids-amended (1986)
 - unamended waste
- Two cutting lengths (25 and 50 cm)
- Planting density
 - 15,000/ha (6,000/ac)

First-year Survival of Willow on Biosolids-amended Solvay Waste

80.1% survival on unamended waste (Field 2)

First Year Growth of Willow on Biosolids-amended Solvay Waste

Average basal area on Field 2 (unamended waste) (1.2 cm²/plot)

Conceptual Hydrologic Model

Provided by Honeywell and O'Brien & Gere

Deep Ground Water

Conceptual Heat and Water Model for a Willow Biomass Crop

Climate

- PPT = 1,018 mm annually
- PPT = 560 mm (Nov Apr)
- Average temp. = 8.3° C
- Crop Management
 - 3-year harvest rotation
 - Soil modifications with organic amendments & tillage
- Determine effect on percolation (leachate generation)

(Figure supplied by USDA)

The Simultaneous Heat and Water (SHAW) Model

- One-dimensional model developed to simulate soil freezing and thawing.
- Simulates snow accumulation and snowmelt, transpiration and actual evaporation.
- Incorporates biomass and other crop management practices as input parameters.

Model Calibration Using Sap Flow

- Stem heat balance method
 - Three-year old willow on mineral soil
 - Sensor sizes range from10 35mm
- Measure: sap flow (g/hr/stem) and stem diameter distribution (stem/ha)
- Compute: Stand-scale sap flow (I/day)

Stem Size Differences in Late Season Sap Flow for One Variety

Stem Diameter Distribution to Determine Stand-level Sap Flow

Diameter class (mm)

Projected Late Season Sap Flow

<i>Salix</i> Variety	Sap Flow (mm)	Sap Flow (I/d/plant)
S25	180	3.4
SV1	65	1.2
SX64	131	2.5

Summary

- Willow (Salix) can be successfully established when organic amendments are incorporated into wastebeds
- Late season transpiration by willow is important to the water balance
- Growth rates and transpiration rates vary amongst willow varieties
- Early modeling indicate that Salix minimizes deep percolation

Future Activities - 2005

- Monitor key soil and vegetation characteristics on the waste beds
- Begin trials on the waste beds with different organic amendments
- Quantify sap flow over entire growing season
- Complete initial model runs and identify key variables
- Calibrate and verify model output

Acknowledgements

- Honeywell International
- O'Brien & Gere Companies

Honeywell

Selection of *Salix* for Field Trials

Greenhouse screening trial of 40 willow and hybrid poplar clones.

Selection criteria:

- Survival
- Below-ground biomass (consider root : shoot ratio)
- High water use "efficiency" (e.g. high water use : biomass ratio)