Economic Implications of ET Covers

William Schubert April 22, 2005

ET Final Cover Types

Arid Semi-Arid **Future** (Humid Climates) Mixed Species Evapotranspiration-type Alternative Cover Hybrid poplars Grass understory Grass 2 feet on-site soil amended Grass with compost 12 inch topsoil erosion layer 6 inches topsoil Trench 36 inch silty water 2.3 feet storage layer on-site soil **Root Barrier** 30 inches lightly compacted soil 12 inch sand capillary barrier 1 foot interim soil

Per Acre Unit Costs

(@ \$3/cy Earthmoving Cost)

Present Value of Design Change for 100 Acre Final Cover

To	Be	Bui	lt:

<u> </u>	∑ Per Acre Unit Cos	t Now	<u>In 2015</u>	<u>In 2035</u>
Sub-Title D (\$50.3K/AC)	- 0 -	- 0 -	- 0 -	- 0 -
Arid Design (\$23.6K/AC)	\$26,700	\$2,670,000	\$1,459,000	\$433,000
Semi-Arid Design (\$36.7K/AC)	yn \$13,600	\$1,360,000	\$ 743,000	\$220,800
	/Hoiner & OEO/	Diagount Da	4-1	

(Using 6.25% Discount Rate)

Comparison of ET Final Cover Design in Humid Climates

Topsoil/Vegetation	\$16,700
Geosynthetic	21,580
Soil Layer	12,000
Capillary Barrier	0
Per Acre Unit Costs	\$50,280

Mixed Species Evapotranspiration-type Alternative Cover Hybrid poplars Grass understory 2 feet on-site soil amended with compost Trench 5.3 feet 2.3 feet on-site soil **Root Barrier** 1 foot interim soil

\$11,700 + \$15,000 (trees)
0
18,000
0
\$44,700

 \triangle = \$5.65K/AC

Present Value of Design Change for 100 Acre Final Cover

To Be Built:

	<u> </u>	<u>Now</u>	<u>In 2015</u>	<u>In 2035</u>
Sub-Title D (\$50.3K/AC)	- 0 -	- 0 -	- 0 -	- 0 -
Humid Climate Design (\$44.7K/AC)	\$5,600	\$560,000	\$306,000	\$90,900

Recent Landfill Emissions Research

- T. Abichou, D Powelson, J.P. Chanton, S. Escoriaza, and J. Stern, Characterization of Methane Flux and Oxidation at a Solid Waste Landfill submitted to ASCE Journal of Environmental Engineering, Fall 2004
- M. A. Barlaz, R.B. Green, J.P. Chanton, C.D. Goldsmith, and G.R. Hater, Evaluation of a Biologically Active Cover for Mitigation of Landfill Gas Emissions, Environ. Sci. Technol, 2004 38,4891-4899
- T. Abichou, J. Chanton, Characterization of Methane Flux, Oxidation, and Bioreactive Cover Systems at the Leon County Landfill, Annual Report- Florida Center for Solid and Hazardous Waste Management. August 2003 to August 2004

3 Critical Findings

1) Emissions can be 100% controlled with soil cover and active gas extraction systems (current AP-42 acknowledges 60% - 85%).

2) Soil oxidation rate (previously assumed @ ≤ 10% of gas production) is much higher (20% w/soil, higher w/organically enhanced designs).

3) Final cover on side slopes (>15%) perform better than final cover on flat slopes, most likely due to greater lateral stress condition in soil layer.

Biocover installed 3/24/04. Since mid June, the biocover has shown significantly greater methane oxidation than control sites.

Statistics – Since Mid June

- % Oxidation significantly greater at the biocover sites @ 99.9% confidence.
- Mean Biocover % oxidation = 36.5% ± 3.0
- Mean Control % oxidation = 17.5% ± 4.7

Landfill Cross Section with Hybrid Final Cover (Beanie Cap)

- Decreased Maintenance of Gas System & Cover
- Allows Soil Attenuation of Some Emissions

Implications for ET Final Cover Designs

1) ET final covers can control emissions.

2) ET covers can incorporate significant emissions control features (not currently recognized in AP-42).

 Higher level of performance of soil cover on side slopes promotes consideration of hybrid designs (i.e., Beanie Caps).

Effect of Decreased Maintenance & Flare Operation

(For 30-Year Post-Closure Period)

Period Beginning:

	<u>Now</u>	In 10 Years	In 30 Years
Decreased Maintenance	\$268,000	\$146,000	\$43,500
Shorter Flare Operational Period	<u>\$141,000</u>	<u>\$77,000</u>	<u>\$22,900</u>
	<u>\$409,000</u>	<u>\$223,000</u>	<u>\$66,400</u>

Present Value of Design Change for 100 Acre Final Cover

To	Be	Bui	ilt:

	<u> </u>	<u>Now</u>	<u>In 2015</u>	<u>In 2035</u>
Sub-Title D (\$50.3K/AC)	- 0 -	- 0 -	- 0 -	- 0 -
Humid Climate Design (\$44.7K/AC)	\$5,600	\$560,000	\$306,000	\$90,900
Humid Climate Design w/Less Maintenance in Post Closure		<u>\$409,000</u>	<u>\$223,000</u>	<u>\$66,400</u>
		\$969,000	<u>\$529,000</u>	<u>\$157,300</u>

Environmental Benefits

Greenhouse Gas Emission Reduction Credits

At 20% oxidation (per Florida State studies) and \$1.75 per ton of CO₂ equivalents, typical 100-acre landfill could accumulate value of over \$2,500,000 over its active life

10 Years 30 Years

Present Value \$1,832,000 \$1,126,000

Present Value of ET Design Change for 100 Acre Final Cover in Humid Climates

	Built Now	Built In 10 Years	Built In 30 Years
Construction	\$560,000	\$306,000	\$90,900
Post-Closure Maintenance Improvement	\$409,000	\$223,000	\$66,400
Environmental Benefits		<u>\$1,832,000</u>	<u>\$1,126,000</u>
Total	\$969,000	\$2,361,000	\$1,283,300

POLICY CHANGES NEEDED

- Recognition of superior performance of soil covers on side slopes — hybrid final cover designs.
- Modification of USEPA standard emissions calculations (AP-42) to allow credit for soil oxidation of emissions.
- Establishment of GHG credit markets (e.g., CCX) that recognize soil attenuation.

Summary

- ET cover designs in arid and semi-arid climates have adequate financial benefits to support technology.
- ET cover designs in humid climates need recognition of long-term and environmental benefits to provide enough value to support technology.
- We need to recognize benefits of soil attenuation of emission in USEPA standards (AP-42) to adequately value all design options.

