

Institute for Ecology of Industrial Areas Katowice, Poland

The use of local species as a cost effective method of soil remediation in developing economies

A. Sas-Nowosielska, R. Kucharski, E. Malkowski, T. Lane

Sponsors: European Union Polish Ministry of Environment Polish Ministry of Science

Site characteristic

Metal soil content

- •Pb 8643 mg/kg
- •Cd 480 mg/kg
- •Zn 9192 mg/kg

Existing plant cover

Dominating plant species

Deschampsia cespitosa (Tufted Hair-grass)

Melandrium album (White Campion)

Silene inflata (Bladder Campion)

Cardaminopsis arenosa (Tall rock-cress)

Present site performance

- Poor plant cover
- Susceptible for erosion

 Presence of hyperaccumulators

Realistic expectations

Good plant cover

 No erosion process

 No hyperaccumulators

Proposed approach - PHYTOSTABILIZATION

Contaminated soil

Additives

Reduction of bioavailable form of Cd, Zn and Pb

Planting

Creation of plant cover

Metal binding additives

- Zeolite
- Mixture of dolomite and zeolite
- Lignite
- Superphosphate ←

High reduction of bioavailable form of metals (about 80%)

- Ammonium nitrate
- Sewage sludge
- Hard coal waste

Toxic effect of metals on plants

- Agrostis capillaris
- Festuca rubra
- Poa pratensis
- Helianthus tuberosus
- Salix viminalis

Screening for local species

Deschampsia cespitosa (Tufted Hair-grass)

*Melandrium album*White Campion

Silene inflata (Bladder Campion)

Cardaminopsis arenosa (Tall rock-cress)

Requirements

- Strong root system
- Avoidance by animals
- Metal accumulation in underground part of plant
- Domination in local plant population

Mesocosm design

http://www.alterra-research.nl/pls/portal30/docs/folder/phytodec/mesocosm.htm

Mesocosm experiment Year I

Mesocosm experiment Year II

Metal concentration and pH in mesocosm leachates

Water retention in mesocosms in relation to plant cover

Mesocosm experiment conclusions

 Reduction of bioavailable forms of metals is needed

Local species of plants is recommended

 Verification of results at a field scale is required

Field experiment design

Control (no plants, no additives)

 Deschampsia cespitosa, superphosphate (5%)

Lime and superphosphate amendment scheme

Changes in plant cover

Changes in plant cover

Pb, Cd and Zn concentration in *D. cespitosa* shoots

Bioavailability of cadmium in soil profile after TSP addition

D. cespitosa root system

Control

TSP added

The rationale of using local plant species

 No problems with adaptation to local climate

Low cost of seeds

Good growth on local soils

Major Population Centers Near Warynski Smelter

Warynski Zinc Smelter

Warynski Smelter Site

BLL in USIR Children 1999 (ug/dL)

BCL in USIR Children 1999 (ug/dL)

