Greenhouse Treatability Studies That Guide Phytoremediation Nutrient Management

Kimberly D. Precht Jeremy A. Rentz Jerald L. Schnoor

Superior, WI Site

Contaminants

- Total Petroleum Hydrocarbons (TPH)
 - Gasoline Range Organics (GRO)
 - BTEX
 - Naphthalene
 - Diesel Range Organics (DRO)
 - Decanes
 - Cosanes
 - PAHs

Superior, Wisconsin

PHYTOREMEDIATION PROCESSES

Nutrient Requirements

- Nitrogen (N) and Phosphorus (P)
 - Depleted during contaminant biodegradation

May limit plant growth

May limit microbial degradation

N/P Addition - Phytoremediation

- Hutchinson et al., 2001
 - Increased degradation of TPH
- Joner *et al.*, 2002
 - Increased degradation of 3/4- ringed PAH
 - Diminished remediation of 5/6-ringed PAH
- Palmroth *et al.*, 2002
 - No improvement for diesel fuel contaminants

N/P Addition - Bioremediation

- Walworth *et al.*, 2003
 - Stimulation of diesel fuel degradation
- Breedveld and Sparrevik, 2000
 - Improved degradation of 4-ringed PAH
- Carmichael and Pfaender, 1997
 - Inhibition of 3/4-ringed PAH degradation w/ N
 - No effect for P addition
- Johnson and Scow, 1999
 - Inhibition or no effect for 3-ringed PAH

Research Objectives

- Determine suitable plants for growth in Superior, WI soils
- Examine the growth response of plants growing in contaminated soil to nutrient amendments
- Assess phytoremediation effectiveness using soil TPH DRO analysis.

Three clay soils (C)

One sandy soil (S)

Differing concentrations of TPH DRO

Soil C0 is a reference sample collected from the northernmost point of the property

Dashed line shows property line

URS

Experimental Design

- Nutrient Amendments (N, P, K, Zn, S)
- 11 Planted Treatments
- 5 Control Treatments
- Field Mixture clovers, grasses alfalfa
- 53-55 day growth period

Seed mixture

Common Name	Scientific Name	Use	%
Climax Timothy	Phleum pretense	Cool season	35.8
Alfalfa	Medicago sativa	Soil nitrification	19.8
Orchard Grass	Dactylis glomerata	Cool season	6.2
Alsike Clover	Trifolium hybridum	Warm season	20.9
Red Clover	Trifolium pratense	Warm season	8.3
Ladino Clover	Trifolium repens	Warm season	2.1

Pot Arrangement

Visual Results (5 weeks)

CO C5 C7 S9

No amendments

100 lb/ac P w/ 360 lb/ac S

225 lb/ac Zn w/ 360 lb/ac S

Normalized Biomass

Treatability Results

- Zinc amendments stimulated early germination and optimum visual growth
- P, K, and Zinc amendments stimulated biomass growth
 - Fertilizer application of 50 lb/ac P, 225 lb/ac Zn and 50 lb/ac K was recommended
- S had a negative effect on growth
 - Added to decrease soil pH
- Nitrogen did not produce positive effects on plant growth

Final [DRO] for S9 Soil

Final [DRO] for C5 Soils

Average Degradation for Clay Soils

URS

Treatment (lbs/acre)

Biomass for Clay Soils

DRO Results for Field Mixture

- N and P additions improved degradation
- Degradation was not always observed
- Results were soil specific
- No correlations between biomass and degradation were observed

Experimental Design - Trees

- Nutrients N, P, K, S, Zn
- Mulch was added (2:1 soil:mulch)
- 4 Planted Treatments
- 1 Control Treatment
- Hybrid Poplar Populus deltoides x nigra DN34
- Hybrid Willow Salix alba x matsudana
- Growing Period 109 days for willow, 119 for poplar

Pot Arrangement

Visual Results - Poplar (119 days)

No amendments

NPK-S-Zn

Visual Results Hybrid Poplars

C0 soil with 50 lb/ac N:P:K – no mulch

C5 soil with 50 lb/ac N:P:K – no mulch

C7 soil with 50 lb/ac N:P:K – no mulch

Visual Results - Willow (109 days)

S9 C7 C5 C0

No amendments

NPK-S-Zn

Willow Biomass (109 days)

Treatment (lbs/acre)

Tree Treatability Results

- Visual observations indicated limited growth
- Biomass growth was greatest for NPK-S-Zn treatment
- Zn had a stimulatory effect on growth
- Willow growth was not a result of primary production
- Low growth suspected to be a result of soil texture not toxicity

Conclusions

- Field Mixture will be successful
- Unclear if trees will be successful

 P, K, Zn stimulated field mixture and tree growth

Conclusions

 7 of 8 best average DRO removals were for planted treatments

 Plant growth did not translate into improved DRO degradation

Compromise between plant growth and degradation

Acknowledgements

UNOCAL

Arcadis

DRO Analysis

DRO 50 mg/L Standard

