

Cost Comparisons of Phytotechnologies to Other Remedial Approaches

David Tsao, Ph.D

OVERVIEW

- 1. Case Study Background
- 2. Net Present Valuation vs. Total Life Cycle
- 3. Influence Factors and Weighted Probabilities of Occurrence
- 4. Rate of Return on (Research) Investment

Case Study Background

Site Conditions:

- Neighborhood properties adjacent to a former petroleum refinery
- Groundwater impacted with gasoline range organics (BTEX)
- Portion of groundwater treated using horizontal 3-phase extraction
- Groundwater 5-13 ft bgs; silty clay; 5 x 10-6 cm/s

Issues:

- Extraction efficiency low (low hydraulic conductivity = low recoveries)
- Refinery property undergoing redevelopment
- Reduce the disturbance to the local community (minimize sound, safety risks, heavy equipment traffic)
- Provide some value to the community for these under-utilized properties

Phytotechnology Option:

 Create bird / butterfly gardens ("Phytoscapes") using vegetation that can promote rhizodegradation and control hydraulics

Site Map

Lots available for Phytoscapes

Phase 1
Horizontal
Wells

Phytoscapes

Concept Borrowed from BP Retail

Landscapes that incorporate phytoremediation species to clean up or prevent environmental liabilities (small leaks and spills)

Plant Screening Experiments Pure Gasoline Injections

Examined various
deep-rooted species
(naturalizing and
landscape); monitored
survivability over time

Injected pure gasoline (+/- 10% oxygenates) at various volumes

Irrigated with pure gasoline (various volumes)

Confirmed roots growing through soil (yellow)

Clean topsoil

Clayey soil

Sub-irrigation only source of water

1 L total soil volume

Gasoline Testing Results

Not Only Tolerate, But Remediate

45 mls per 1 L cell (7.5% by wgt)

Final Soil Concentrations:

Unplanted Control Pots (not shown):

► BTEX 1,875 ug/kg

MTBE 2,700 ug/kg

Planted Pots: Bottom Soil Layer

BTEX 46 ug/kg (ND, 11, ND, 35)

MTBE 50 ug/kg

orders of magnitude lower

Gasoline Toxicity Results

Tolerant Species

- **3 out of 3** Buffalo grasses (*Buchloe dactyloides* spp.)
- MOST ornamental clump grasses (Andropogon, Bouteloua, Elymus, Miscanthus, Pennisetum, Saccharum,...)
- **1 of 1** Columbine (*Aquilegia* canadensis)
- 1 of 2 Coneflowers (Echinacea sp.)
- **2 of 2** Blazingstars (*Liatris* sp.)
- **3 of 3** Hollies (*llex* sp.)
- 1 of 1 Mugo pine (Pinus mugo)
- 2 of 3 Viburnums (Viburnum sp.)

Intolerant Species

- 2 of 3 Goldenrods (Solidago sp.)
- 2 of 2 Indigos (Baptista sp.)
- 1 of 2 Asters (Aster sp.)
- 1 of 1 Golden Alexanders (Zizia aurea)
- 1 of 1 Cardinal flower (Lobelia cardinalis)
- 1 of 2 Daylilies (Hemerocallus sp.)
- 4 of 5 Junipers (*Juniperus* sp.)
- 1 of 1 Japanese yew (Taxus x Media)
- **1 of 1** Emerald arborvitae (*Thuja occidentalis*)

Uses:

Prevention and Remediation

Uses:

– Leak Detection?

See Poster

Total Life CycleCost Comparison

- Option 1: Horizontal 3-Phase (H3P) Extraction System
 - Capital (installation) \$1,000k
 - OM&M = \$150k per year for 5 years**\$ 750k**
 - TOTAL Life Cycle Cost \$1,750k
- Option 2: Plant Hydraulic Barrier (Phyto) System
 - Capital (research and development)\$ 110k
 - Includes pilot test, standard (1°) + additional (2°) monitoring
 - Capital (installation)\$ 200k
 - OM&M (establishment) = \$45k year 1, \$25k year 2
 70k
 - OM&M = \$10k per year thereafter for 8 years\$ 80k
 - TOTAL Life Cycle Cost \$ 460k
- Cost Savings (Value Added) \$1,290k
- "Does not consider the time-value of money...
 economics are not realistic"

Net Present Valuation (NPV)

Cost Comparison

- Option 1: Horizontal 3-Phase (H3P) Extraction System
 - Capital (\$1,000k installation now)
 - OM&M (\$150k/yr for 5 years future)
 - TOTAL NPV (2.5% Rate)

\$1,603k

- Option 2: Plant Hydraulic Barrier (Phyto) System
 - Capital (\$110k R&D spent already)
 - Capital (\$200k installation now)
 - OM&M (\$75k for 2 years establishment future)
 - OM&M (\$10k/yr for 8 years after establishment future)
 - TOTAL NPV (2.5% Rate)

\$ 416k

Cost Savings (Value Added)

\$1,187k

 "Still not a fair comparison...Option 1 could be anything outlandish...artificially creates a clear-cut decision"

Other Influencing Factors Quantifiables to Non-Quantifiables

- Quantifiables:
 - Capital and M&M costs, legal fees, risk assessments, reporting requirements, length of project
- Semi-Quantifiables:
 - Regulatory acceptance, meets remedial goals, innovative approaches
 - Community relations

 Community relations
 - NGO support, stakeholder engagement, ecological benefit/impact
- Non-Quantifiables:
 - Company core values (i.e. green company), corporate strategy, "right thing to do", livability
- Although the semi- and non-guantifiables are difficult to valuate, they undeniably have real influence on clean up options

Weighted Probability of Occurrence

Influencing Factors	H3P Extract		Phyto
Quantifiables Financials (Net Present Valuations)	+ 0%	(0%)	+100% (100%)
Semi-Quantifiables Meet Remedial Goals (Track Records) Innovative Approach (Univ. Involved) Beneficial Reuse (Fits Local Plan) Ecological Enhancement (Want/Need)	+50%	(50%)	- 50% (50%)
	- 5%	(45%)	+ 5% (55%)
	- 10%	(35%)	+ 10% (65%)
	- 5%	(30%)	+ 5% (70%)
Non-Quantifiables Livability (Complaints of H3P System) Corporate Strategy (Reuse)	- 10%	(20%)	+ 10% (80%)
	- 5%	(15%)	+ 5% (85%)

Weighted Probability of Occurrence Cost Comparison

- Option 1: Horizontal 3-Phase (H3P) Extraction System
 - TOTAL NPV \$1,603k
 - Weighted Probability of Occurrencex 15%
- Option 2: Plant Hydraulic Barrier (Phyto) System
 - TOTAL NPV+\$ 416k
 - Weighted Probability of Occurrence
 x 85%
- Weighted NPV Options Baseline \$ 594k
- ACTUAL: Plant Hydraulic Barrier (Phyto) System
- TOTAL NPV (100% weighted)- \$ 416k
- Cost Savings (Value Added)
 \$ 178k
- "Very defendable accounting approach...rigorous (yet simple) process"

Additional Value "Tips the Scales"

Semi- and Non-Quantifiables

Option #1 - H3P

Option #2 – Phyto

Financials

Financials

- + Educational
- + Stakeholder Engagement
 - + Ecological
- + Reputation
- + Corporate Values

Justifying R&D

Pilot Study Costs of \$110k

Planting

Weather Parameters / Sap Flow

Pilot Study Other Components

Rate of Return on Investment

- Research Investment to conduct phyto pilot: \$110k
 - Not known up front whether it would prove successful
 - Compete against capital projects (revenue-generating)
- Concept of a Rate of Return (RoR):
 - If you invest \$1, you want to get back more than \$1 in revenue
 - Common industry practice uses a hurdle RoR, i.e. 15% (\$1.15 back)
 - A project that does not exceed hurdle usually will not get funded
- How do you incorporate this into remediation?
 - Generally, remediation is only a cost-center (no revenue generated)
 - But, there is a cost savings in using alternative approaches
 - Use the NPV and weighted outcomes to include semi- and nonquantifiables

Rate of Return on Investment

- Option 1: H3P System Total NPV x Weighting
- \$240k
- Option 2: Phyto System Total NPV x Weighting
- +\$354k

Weighted NPV Options Baseline

\$594k

ACTUAL: Phyto System Total NPV

- \$416k

Cost Savings (Value Added)

\$178k

Phyto R&D Investment

\$110k

Rate of Return on Investment

Conclusions and Recommendations

Corporate Perspective

- Economics of remediation evaluated on a common accounting basis
- Use net present valuation over life cycle costs
- Use probabilities of occurrence to weight options
- Demonstrate a beneficial rate of return on investment

Benefits of this to the Site Owners

- Provides justification to spend on remediation
- Advocate semi- and non-quantifiable influencing factors to managers and regulators alike (step through the holistic thought process, "tell the whole story")

Benefits of this to the Environmental Consulting Community

- Puts the economics in terms that site owners understand
- Keeps it realistic (believable and credible)
- Benefits of this to the Academic Community
 - Provides justification to secure R&D funding from site owners

QUESTIONS!!!

Better Process