

National Inventory of Potential Sources of Soil Contamination in Cyprus

Part 2 Risk-Based Approach to Assessment of Cypriot Contaminated Sites

Eleonora Wcislo and Marek Korcz Institute for Ecology of Industrial Areas, Katowice, Poland

> NATO/CCMS Pilot Study Meeting Ljubljana, Slovenia, June 17-22, 2007

Guidance on Contaminated Site Risk Assessment in Cyprus

- risk-based approach to assessment of Cypriot contaminated sites
- methodology for developing risk-based soil guideline values (RBSGVs)
- RBSGVs for Cypriot soil contaminants under different land use patterns
- chemical-specific data
- methodology for site-specific human health risk assessment (HRA)

MINISTRY OF AGRICULTURE NATURAL RESOURCES AND ENVIRONMENT

GEOLOGICAL SURVEY DEPARTMENT

INSTITUTE FOR ECOLOGY OF INDUSTRIAL AREAS

6 Kossutha Street, 48-866 Katowice, Poland Tel.: 468-32-2549031 - Pac: 448-32-2541717 http://www.ietu.katowice.pl/

NATIONAL INVENTORY OF POTENTIAL SOURCES OF SOIL CONTAMINATION IN CYPRUS

(Tender number 5/2004)

PART 5

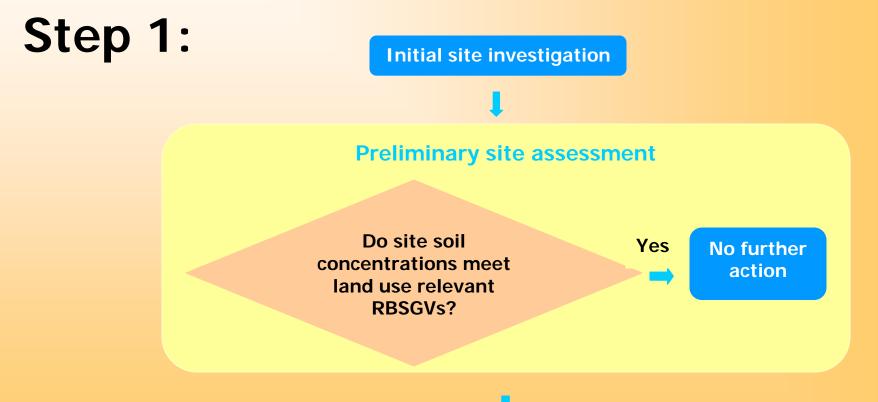
GUIDANCE ON CONTAMINATED SITE RISK ASSESSMENT IN CYPRUS

1. SITE-SPECIFIC HUMAN HEALTH RISK ASSESSMENT (HRA)

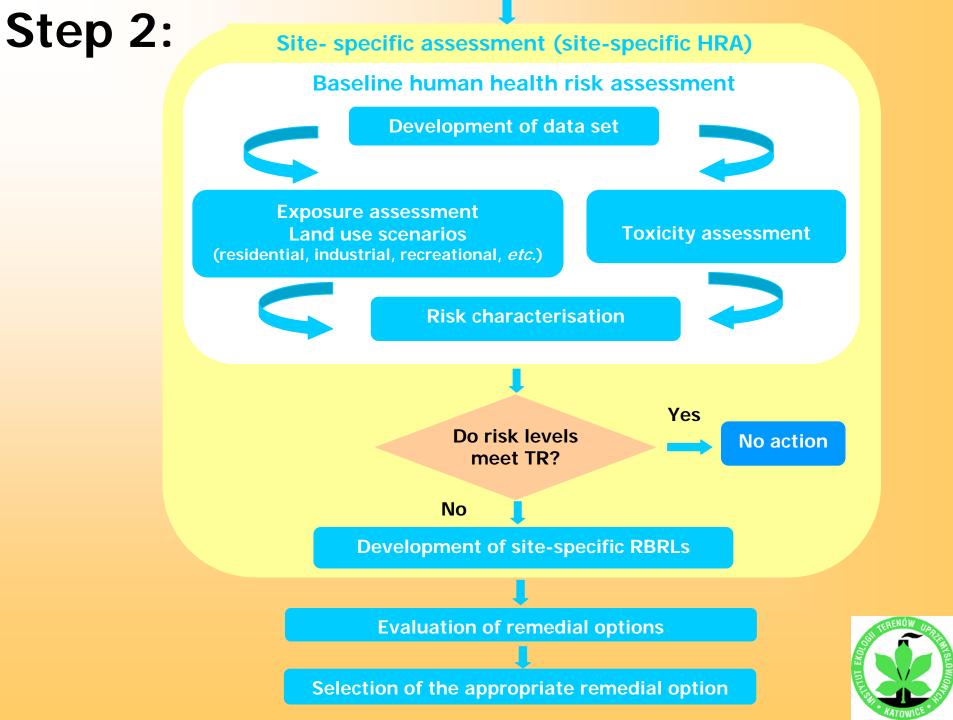
2. RISK-BASED GUIDELINE VALUES FOR SOIL CONTAMINANTS (RBSGVs)

> Electrona Wcialo, Marek Korcz Jeditułe for Ecology of Jeduatrial Areas, Ratowice, Polacef

Incomparing by CELEMA with Apple and itter useful internation and incurrenceme company


Kalowice, November 2005

Risk-based approach characteristics


- two-step assessment process
- refers to human receptors
- considers three land use patterns industrial, residential and recreational
- refers to current and/or future land use patterns
- adopted the recent US EPA risk assessment procedures (US EPA 1996, 2000, 2001, 2002)

Two-step contaminated site assessment process

Risk-based soil guideline values - RBSGVs

concentration levels for individual chemicals at or below which no appreciable chronic human health risk is expected

RBSGVs

 intended for the protection of human health

 developed for 102 potential soil contaminants, selected according to soil polluting activities in Cyprus

RBSGVs

 developed under three basic exposure scenarios

 industrial
 residential
 recreational

 derived from standardised sets of equations and default values

RBSGVs - Receptors

industrial land use outdoor worker

residential and recreational land uses child receptor for non-cancer effects aggregate residential/recreational user for cancer effects

RBSGVs

Default exposure parameters

			Residential	scenario	Industrial/Commercial	Recreationa	l scenario
Symbol	Description	Unit	Child	Adult	scenario (Adult)	Child	Adult
EF	Exposure Frequency	days/yr	350	350	225	214	214
ED	Exposure Duration	years	6	24	25	6	24
FC	Soil Fraction Contacted	unitless	1	1	1	0.08	0.08
BW	Body Weight	kg	15	70	70	15	70
IR _o	Ingestion Rate for soil	mg/day	200	100	100	200	100
IR _i	Inhalation Rate for soil	m ³ /day	10	20	20	10	20
SA	Skin Surface Area - soil contact	cm ²	2800	5700	3300	2800	5700
AF	Soil-to-skin Adherence Factor	(mg/cm ² /day)	0.2	0.07	0.2	0.2	0.07
AT (non-carcinogens)	Averaging Time AT=ED*365d/yr	days	2 190	8 760	9 125	2 190	8 760
AT (carcinogens)	Averaging Time	days	25 550	25 550	25 550	25 550	25 550

RBSGVs Default target risk levels

Target Hazard Quotient (HQ) = 1

Target Cancer Risk = 1E-06

RBSGVs – Methodology (1)

Calculated types of RBSGVs

- combined oral/dermal RBSGVs
- inhalation RBSGVs (fugitive dust or volatiles)
- cancer and non-cancer RBSGVs
- soil saturation limit (C_{sat}) for volatiles, liquid at typical soil temperatures

RBSGVs – Methodology (2)

compared all types of RBSGVs

 the lowest value (as the most conservative) selected as the final RBSGV under a given land use pattern

RBSGVs Groups of substances (1)

- inorganics (e.g., As, Cd, Cr, Hg, Ni, Zn)
- aromatic hydrocarbons (*e.g.*, benzene, ethylbenzene, toluene, xylene)
- PAHs (*e.g.*, anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, chrysene, fluoranthene, indeno(1,2,3-cd)pyrene, naphthalene)

RBSGVs Groups of substances (2)

- chlorinated aliphatic hydrocarbons (*e.g.*, chloromethane, 1,1-dichloroethane, 1,1-dichloroethene, trichloroethene, tetrachloroethene)
- chlorobenzenes

phenols and chlorophenols

RBSGVs Groups of substances (3)

pesticides (e.g., aldrin, DDT)

- dioxins and dioxin like PCBs
- other substances

 (e.g., dibutylphthalate, ethylene glycol, methyl-tert butyl ether)

RBSGVs - Recommendation

revise and regularly update the derived RBSGVs (*e.g.*, in 5 years)

Site-specific HRA process steps

- perform baseline HRA
 - develop data set
 - assess exposure
 - assess toxicity
 - characterise risk
- develop site-specific risk-based remedial levels (RBRLs) (if risk estimates exceed target risks)

Development of data set

- preliminary identification of potential human exposure, according to the defined land use patterns
- collection and evaluation of existing site data
- identification of data gaps (a check list of necessary data provided)
- contribution to the development of sample collection strategies (if required)
- identification of analytical needs

Development of data set

- collection and evaluation of new site data
- sorting soil concentrations by appropriate depths of sampling relevant to land uses and types of chemicals
- division of a site into sub-areas and sorting site data by sub-areas (if required)
- collection of updated chemical-specific data for site contaminants
- development of unified data set for each chemical (statistical calculation)

Exposure assessment

- identification of potential receptors (children, adults) and their types of activities
- identification of soil exposure pathways
 - Incidental soil and dust ingestion
 - dermal contact with soil
 - inhalation of fugitive dust
 - inhalation of volatiles outdoors
- estimation of pathway-specific chemical intakes (relevant equations provided)

Toxicity assessment

- collection of information on toxicity of evaluated contaminants
- identification of important toxicity measures (RfD_s, CSF_s, ABS_d, ABS_{GI})
- identification of carcinogen classes and target effects/target organs

Risk characterisation (1) Non-cancer risk

 quantification of hazard quotients (HQs) for each non-carcinogen/exposure route by receptors (child, adult) HQ = CDI/RfD

 calculation of total hazard index (HI) by receptors (child, adult) (summing HQs calculated for all exposure routes/ pathways and all non-carcinogens)

Risk characterisation (2)

Non-cancer risk

- comparison of total HI with noncancer target risk (HI = 1)
- summing the HQs according to the target organs/effects, if HI > 1

Risk characterisation (3) Cancer risk

- quantification of cancer risks (CRs) for each carcinogen/exposure route by receptors (child, adult) CR = CDI x CSF
- calculation of total CR by receptors (summing the CRs calculated for all exposure routes/pathways and all carcinogens)

Risk characterisation (4)

Cancer risk

- calculation of aggregate risk under residential and recreational exposure scenarios
- comparison of total CR with cancer target risk (CTR=1E-06)

Risk characterisation (5)

presentation of baseline risk assessment results

 characterisation and presentation of uncertainties

Site-specific RBRLs

concentration levels for individual chemicals, also termed risk-based concentrations, which correspond to target risk (TR), *i.e.*,a specific cancer risk level (*e.g.*, 1E-06), or hazard quotient (HQ), or hazard index (HI) (*e.g.*, less than or equal to 1)

Development of site-specific RBRLs (1)

 calculation of soil oral/dermal and inhalation RBCs under the relevant exposure scenario

RBC = C × TR/Calculated Risk

- C chemical concentration in soil
- TR target risk (cancer or non-cancer)
- RBC risk-based concentration (oral/dermal or inhalation)

Development of site-specific RBRLs (2)

 calculation of adjusted RBCs for noncarcinogens, if more than one chemical affects the same target organ or organ system

ARBC = RBC/n

- **ARBC** adjusted risk-based concentration
- **RBC** risk-based concentration (oral/dermal or inhalation)
- n number of contaminants with the same target organs/effects

Development of site-specific RBRLs (3)

- calculation of C_{sat} for volatile contaminants, liquid in typical soil temperatures
- establishment of volatile inhalation RBC as equal to C_{sat}, if the calculated volatile inhalation RBC > C_{sat}

Development of site-specific RBRLs (4)

- comparison of all types of RBCs, developed for a given contaminant
- selection of the lowest RBC value as a preliminary remedial level
- comparison of the lowest RBC with the background concentration (BC)
- establishment of RBRL as equal to BC, if the lowest RBC < BC

Risk-based approach role in decision-making (1)

- determine the needs for reducing risk and the needs for remedial/corrective actions
- set up remedial/corrective options
- select a remediation option or a corrective action, appropriate for site-specific conditions

Risk-based approach role in decision-making (2)

- design and conduct site remedial action to protect human health
- facilitate other risk management decisions (*e.g.* changing the land use pattern)

Thank you for your attention !!!

Institute for Ecology of Industrial Areas 6 Kossutha Street 40 - 844 KATOWICE http://www.ietu.katowice.pl/