

Steam Enhanced Remediation In Fractured Rock

(and a little about the other sites)

Gorm Heron, Scientist/Engineer
Hank Sowers, CEO/Chief Operator
Dacre Bush, Geologist/Program Manager
Gregg Crisp, Site manager

SteamTech Environmental Services Bakersfield, CA

ı

Visalia Pole Yard

Creosote DNAPL to +140 ft depth Alluvial sands and gravels with clays Both LNAPL and DNAPL Approaching MCLs in 2002 Craig Eaker, SCE 160,000 gallons removed from subsurface In-situ destruction significant

UC Berkeley – LLNL - SCE

Edwards AFB Site 61

Florida site

- Full-scale clean-up with performance guarantee
- Steam enhanced remediation and electrical heating
- Tight pneumatic and hydraulic control
- Stimulated oxidation reactions for reduction of TPH concentrations in oily areas
- Detailed subsurface monitoring (temperature and electrical resistance tomography)

′

Preliminary results, Edwards AFB

Acknowledgments to:

- Stephen Watts, Edwards AFB project manager
- Dave Leeson, AFCEE
- Scott Palmer, Earth Tech project manager
- Gregg Crisp, site manager and operator
- Layi Oyelowo, Edwards AFB

Results are preliminary, conclusions have not been published or confirmed by the above persons

Objectives/questions

- •Will SER be effective for removal of VOCs from fractured rock at Edwards AFB?
- •How is the DNAPL mobilized and extracted?
- •What are the ultimate VOC cleanup levels that can be expected at Edwards AFB using SER?
- •How rapidly will the steam heat Site 61 at Edwards AFB?
- •How should steam injection and extraction well-fields be designed for optimum performance at Edwards AFB?
- •What is the optimal steam injection and extraction strategy for DNAPL in fractured rock at Edwards AFB?

•How long will the site stay hot after completion of the steaming?

Strategy

Vacuum test: Vapor capture radius ~ 80 ft

Initially steam injection deep only, extraction shallow

Air co-injection

Extract 25 to 50 % more than injected

Monitor carefully and adjust strategy

Results

- Successful treatability study great data
- Steam heated site partially, and accelerated mass removal
- More than 700 lbs of VOCs removed
- NAPL recovered where no NAPL was expected
- Air injection promising for opening fractures to steam flow, and potentially for reducing risk of NAPL condensation
- ERT apparently valuable at Edwards: Heated zones showed large changes in electrical resistivity

• Very uneven steam distribution: Increased focus on temperature monitoring, also in extraction wells