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Bioremediation Background

* In Situ Bioremediation of chlorinated solvents:

— Solvents utilized as electron acceptors by
indigenous microorganisms

— Chlorine atoms sequentially replaced with
hydrogen through “reductive dechlorination”
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A Paradigm Shift?

» Conventional applications for in situ
bioremediation limited to dissolved phase for two
primary reasons:

— Concerns about toxicity
— Impact on nonaqueous sources thought to be no better
than pump and treat

» New research reveals that in situ bioremediation
may be extremely effective for chlorinated solvent
source areas




Enhanced Mass Transfer

* In situ bioremediation can enhance mass
transfer, addressing the concerns previously
thought to limit bioremediation applications:

— Many investigators have shown that

dechlorinating bacteria actually have an
ecological niche in high concentration areas

— Several studies have shown that in situ
bioremediation enhances mass transfer of
contaminants through at least three mechanisms




Mechanisms of Enhanced
Mass Transfer

 Mechanisms for enhanced mass transfer

— Bioremediation removes contaminants from the
aqueous phase, thereby increasing the driving
force for mass transfer = k(C-C)

— Increasing solubility of reductive dechlorination
degradation products greatly increases the
maximum aqueous contaminant loading

— The electron donor solution can be used to
decrease interfacial tension, thereby increasing
the effective solubility




Enhanced Mass Transfer:
Mechanisms 1 and 2

* Enhanced mass transfer of chlorinated solvent
NAPLs due to reductive dechlorination has
been demonstrated in at least two laboratory
batch studies:

— Yang and McCarty (2000) showed enhanced PCE
dissolution up to a factor of 5 higher than without
reductive dechlorination

— Carr et al. (2000) showed reductions in NAPL

longevity of 83% due to reductive dechlorination
in continuously stirred tank reactors




Enhanced Mass Transfer:
Mechanisms 1 and 2

* Enhanced mass transfer of chlorinated
solvent NAPLs due to reductive
dechlorination has been demonstrated in at
least one laboratory column study:

— Cope and Hughes (2001) demonstrated total
chlorinated ethene removal was 5 to 6 times

higher with reductive dechlorination as
compared to abiotic washout
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 Enhanced chlorinated ethene removal due to

Enhanced Mass Transfer:

Mechanisms 1 and 2

reductive dechlorination in columns with
PCE DNAPL (Courtesy of Joe Hughes)
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Enhanced Mass Transfer:
Mechanism 3

* The impact of sodium lactate and other electron
donor solutions on water-TCE interfacial tension
was investigated in unpublished laboratory studies

* The results supported a pending patent for the
Idaho National Engineering and Environmental
Laboratory

» The process is referred to as Bioavailability
Enhancement Technology™ (B.E.T.™)
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Impact of Electron Donor
Solutions on Interfacial Tension

60

[$2
o

N
o

Interfacial Tension (dyne/cm)
N w
o o

-
o

o

0.1 1 10
Lactate Concentration (%)

=== 0% Solution B ==0=0.1% Solution B ===1% Solution B ===10% Solution B

100

13



Enhanced Mass Transfer:
Mechanism 3

» Enhanced mass transfer due to electron
donor solution interaction with nonaqueous
TCE, followed by complete reductive
dechlorination has been observed in at least
one field study:

— Sorenson (2000, in press) showed that TCE
concentrations were greatly enhanced due to
facilitated transport associated with the electron

donor solution (high concentration sodium
lactate)

— This work will serve as our case study
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Test Area North (TAN) Background

* Industrial wastewater (including solvents), low-
level radioactive wastes, and sanitary sewage
were injected directly to the Snake River Plain
Aquifer from the late 1950s to 1972

* TCE plume is nearly 2 miles long

» Residual source area is about 100 ft in diameter
» Contaminated aquifer is about 200-400 ft deep
» Aquifer is comprised of fractured basalt
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Record of Decision (1995)

* Pump and treat selected as default remedy
 Treatability studies established for alternative

technologies:

— zero-valent iron

— monolithic confinement

— 1in situ chemical oxidation

— in situ bioremediation

— natural attenuation

* 100-year remedial time frame
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Objectives for the 1-year In Situ
Bioremediation Field Evaluation

* Primary Objective: Demonstrate that
biodegradation of TCE can be significantly
enhanced through electron donor addition

 Create hydraulic “treatment cell” to maintain
hydraulic containment of the source area and
control residence time

* Determine controls on process efficiency
through extensive monitoring
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Electron Donor Distribution
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Redox Conditions
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Long-Term Dechlorination
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Enhanced Mass Transfer from

4.0E-05
3.6E-05
3.2E-05
— 2.8E-05
=
‘© 2.4E-05
£
o 2.0E-05
5]

c
e 1.6E-05
W 1.2E-05

8.0E-06
4.0E-06
0.0E+00

DNAPL Source Area

mTCE
O cis-DCE
O trans-DCE ||
mVC
O Ethene

1/6/99 3/6/99 5/6/99 7/6/99 9/6/99 11/6/99 1/6/00 3/6/00

Date

34

34



E
=
—
™
=]
=
| =
i
&0
L]
| =]
T
! =
=
2
P
=
=]
Ly
5]

e
e, L

700
Tritium

=l = Tptal Chlcroethenes
« # = gig-DCE i

al

400

Apr-89

Jun-949

JukEa

Date

Sep-of

a

Migw-00 Dec-88 Feb-0D0

o [eis-DCE

=

C I

35



TAN 25 chloroethenes

Joncentration (ppb)

C

Days of injection




Status of Enhanced In Situ
Bioremediation at TAN

» Formal regulatory approval to implement
bioremediation at the TAN DNAPL source
area as a replacement for the default remedy
has been granted. A ROD amendment was
signed in 2001.
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Ft. Lewis ESTCP Demonstration

» The project will use two in situ treatment cells
to quantitatively demonstrate the enhanced mass
transfer and degradation that occurs due to in
situ bioremediation in a chlorinated solvent
source area

* One cell will be operated to test the first two
mass transfer mechanisms, while the other will
add the third mechanism

 Project planning is underway; field work is
scheduled to begin in January 2003
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