

Investigating Chemicals from Wastewater Discharges in Tinkers Creek—Practical approaches to a successful field deployment

Tinkers Creek above Dunham Road

U.S. Department of the Interior U.S. Geological Survey

John Tertuliani David Alvarez Edward Furlong Michael Meyer

Why study Tinkers Creek?

TMDL for the Cuyahoga River reported unknown sources of impairment in Tinkers Creek, recommended a study to determine sources of impairment

(Fish population did not exploit available habitat)

WWTP effluent as flow

Percent of effluent in Tinkers Creek

- 75% during low flow
- 27% mean annual flow

27 mg/d discharge from the 7 WWTPs

Strategy: What is coming to the stream?

Sample the known sources—bracket the WWTPs

Downstream station

Upstream station

A standard POCIS device has 41 cm² of effective sampling surface area

Pharmaceuticals
Generic (for most pesticides, hormones, etc.)

Why use POCIS?

- Logistics: Cannot duplicate application with field crews
- Timing: Peak-flow and WWTP capture guaranteed
- Ease: No moving parts or adjustments
- Concentrates trace levels of chemicals
- Time-weighted concentrations
 - Important for risk assessment determinations

Disadvantages

- Vandalism: Can be a problem in popular areas
- Deployment: Anchoring in position
- Chemical analyses: Limited by target chemicals, available methods, and laboratories

Deployment

POCIS position critical when collecting a sample below the outfall

Substrate can make deployment difficult

Bedrock and boulder substrates are the most challenging places to deploy a monitoring device for an extended period

Anchoring is next to impossible

Swift water can be unmanageable

Exposed roots and dead stumps

Trees offer a solid point to attach cable, but the cable can be a liability during high water; it will pull the device to the bank

Boulders and riprap

Cable length

Longer cables exert greater tension on the canister, allow greater movement

Depth

Can limit sampling opportunities

Smaller streams may become too shallow in the summer

Device will move with an increase in flow

To the bank

To the depositional area

Steep banks favorable

Device less apt to rest on bank shelf when water recedes (if cable is short)

Debris

Branched trees worse

The threat of debris restricts cable placement, safety is also a concern

Use two separate cables, one from each bank, the shorter cable should break

Vandalism possible

Because the device is visible

Visible from every direction

Retrieval

Placed in air-tight can and shipped with ice packs

What is next for Tinkers Creek?

Tissue study on fish

Future R&D?

Compare cold water data to warm water data

What to consider for your study?

- Timing
 - Stream size, other data collected, school year
- Canister placement
 - Mixing, anchoring for high water
- Tissue study on fish
- Target chemicals

