

Sources, Transport, Exposure & Effects of PFASs UNIVERSITY OF RHODE ISLAND SUPERFUND RESEARCH PROGRAM

URI STEEP Superfund Research Center II: Sources, Transport, Exposure and Effects of PFAS (P42 ES027706)

1000s of PFAS 100s produced * 10s monitored 6+ targeted (EPA)

HO-

• Categories:

Figure 1. Per- and polyfluoroalkyl substances (PFAS).

2

SCOTCHGARD **STEEP Integration:**

PFAS Contamination in the U.S. (June 8, 2022)

What is safe? It depends on where, when, which.

Sources, Transport, Exposure & Effects of PFASs UNIVERSITY OF RHODE ISLAND SUPERFUND RESEARCH PROGRAM

Connecting science and people

STEEP Research: Environmental Fate & Transport

STEEP Research: Childhood Risk

STEEP Research: Detection Tools

STEEP Core: Next Generation

STEEP Core: Research Translation

STEEP Research:

Metabolic Effects

STEEP Core: Community Engagement

STEEP Core: Administrative

www.uri.edu/steep

6

Project 1 new foci: Shift away from groundwater transport Now: precursor transformations and relevance for atmospheric deposition, food web bioaccumulation, and drinking water

Aim 1: Quantify PFAS contributions from an AFFF-contaminated site to fish in downgradient ecosystems using measurements and statistical modeling in paired water and fish samples

Hypothesis: Abundant polyfluoroalkyl precursors contribute to bioaccumulation of terminal PFAS in fish.

Aim 2: Develop a mechanistic model for PFAS bioaccumulation in fish based on understanding of PFAS binding to proteins and phospholipids and trophic interactions that can assist in informing fish advisories

Hypothesis: Model performance will be sufficient for explaining biological concentrations of PFAS with greater than 8 perfluorinated carbons but others will require new mechanistic adaptations.

Aim 3: Use a chemical transport model to characterize the contributions of atmospheric PFAS emissions, including polyfluoroalkyl precursors, to PFAS inputs to ecosystems.

Hypothesis: Atmospheric oxidation of precursors and deposition is a large and previously overlooked source of PFAS, particularly downwind of point sources

Aim 4: Develop a screening tool for identifying private wells with PFAS contamination for MI, NJ and MA by adapting a hybrid mechanistic-empirical model previously developed for NH.

Hypothesis: Data on PFAS source abundance and hydrological variables can accurately predict the likelihood of PFAS detection at levels of concern in private wells.

Project 2: Inflammation and Metabolic Changes in Children Developmentally Exposed to PFASs PI: Philippe Grandjean (HU), w/Pal Weihe (Faroese Hospital)

Faroes community

- The Faroe Islands are comprised of a dozen islands located between the Shetland Islands and Iceland
- Unique epidemiological setting, where birth cohorts have been formed and followed-up with minimal attrition
- The marine diet results in a wide range of PFAS exposures
- The Faroese are of Nordic and Irish origin and comparable in many ways to other Western populations.

Change in serum total cholesterol associated with a doubling in serum-PFAS concentrations at four different childhood ages

What happens at age 15 years (and onwards)?

Blomberg et al., 2021

Areal **Bone Mass** Density at age 9 years associated with serum-PFAS

What happens at age 15 years (and onwards)?

Blomberg et al., 2022

National Institute of Environmental Health Sciences Superfund Research Program

Faroe Islands (clinical)

Deildin fyri Arbeiðs- og Almannaheilsu Denmark (lab support)

Syddansk Universitet

THE UNIVERSITY OF RHODE ISLAND

SCHOOL OF PUBLIC HEALTH Department of Environmental Health

National Institute of Environmental Health Sciences Superfund Research Program

STEEP is funded under award number P42ES027726. More information about STEEP is available at: https://web.uri.edu/steep/

P3-Mechanisms of PFAS Toxicity

• Goal is to uncover key molecular and cellular mechanisms that contribute to PFA tissue distribution and elimination *in vivo*

Addresses SRP mandate #4 -

(basic biological, chemical, and physical methods to reduce the amount and toxicity of hazardous substances).

Addresses SRP mandate #2

(to develop methods and resources to methods to assess the risks to human health presented by hazardous substances).

Aim 1: Does the OATP2B1 transporter mediate PFBS, PFHxS, and PFOS uptake?

Aim 2: Do binding proteins, such as albumin and LFABP mediate PFBS, PFHxS, and PFOS tissue retention and elimination?

Aim 3: Do Efflux transporters, such as ABCG2 mediate efflux from the cell?

Key P3 Findings

- *In vitro:* many PFAS transported by OATP, OAT, and ABCG2.
- 6:2 FTS is impermeable, and a strong "hit" for transporter interactions
- LFABP is less critical that hypothesized for tissue accumulation

- Mice lacking serum albumin were used
- Dosed 10 mg/kg x 7 days. Rationale: This dose regimen induces adverse liver outcomes in mice
- Confirms albumin as an important target for serum levels
- Being repeated with 1 mg/kg x 7 days; and single PK studies

Project 4 – Detection, bioaccumulation and remediation

• Aim 1 – Detection and remediation with polymers

Aim 2: Passive samplers as proxies for PFAS bioaccumulation (lab/field)

Figure 10. Proposed PFAS sampling sites along the Delaware River⁶²

Aim 3: Atmospheric PFAS transport& exposure

Figure S1. Weight-normalized, blank-corrected concentrations of 6:2 FTOH and 8:2 FTOH per gram of PE sheet.

STEEP's integration at its core

Community Engagement Core

Laurel Schaider, PhD Silent Spring Institute Emily Diamond, PhD University of Rhode Island

Aim 1 Understand PFAS exposures through new pathways (e.g., homegrown produce, locally caught fish, indoor environments)

> Collaborate with Mashpee Wampanoag Tribe to test fish and shellfish, and develop tailored risk messaging strategies to reduce PFAS exposure

Aim 3

Aim 4

Aim 2

Connect STEEP trainees with high schools on Cape Cod to enhance understanding of PFAS and other water quality issues

Collaborate with community organizations to empower communities affected by PFAS contamination.

more

Research Translation Core

Amber Neville URI Coastal Institute Jaclyn Witterschein URI Coastal Institute

Provide relevant and timely research translation and engagement

- STEEP website, social media posts and trainee social media takeovers
- Research podcasts, video segments and trainee clips ٠
- Quarterly newsletter and annual report ٠

Aim 1

Aim 2

Public film screening of *Burned: Protecting the Protectors* ٠

Identify and work with new/existing stakeholders and collaborators

- Partnership with the URI Harrington School of Communication and Media courses
- Continuous cycle of engagement for STEEP trainees to ٠ promote their research and accomplishments
- Trainee mentorship via the URI DWELL Lab ٠
 - Visual rhetoric, digital media
 - PFAS augmented reality workshop

Philippe Grandjean, Ph.D. Episode 2. PFAS: Our Human Health Legacy

Laurel Schaider, Ph.D Episode 3. PFAS: Hidden in Plain Sight

Silent Chemicals, Loud Science Podcast Series

LISTEN NOW

Episode 1. PFAS: Like a Bad Neighbor

Trainee Spotlight: Asta Habtemichael

Asta Habtemichael inducted in the into the inaugural cohort of American Association of Colleges and Universities (AAC&U) Future

Leaders Society, finalist for the honorary K. Patricia Cross Future Leaders Award ...Read more

"BURNED: Protecting the Protectors" short film screening & panel discussion

BURNED Protecting the Protectors, from Ethereal Films and produced by Mark Ruffalo, documents the true story of how the spouse of a firefighter revealed significant exposure to PFAS affecting the fire community. Please join us for this short film, followed by a panel discussion featuring Professor Rainer Lohmann (URI Graduate School of Oceanography), Professor Angela Slitt (URI College of

Pharmacy), and Jason Burns (Fall River Firefighter & Executive Director, The Last Call Foundation). ...Read

Data Management & Analysis Core

Harrison Dekker University of Rhode Island Marie-Abele Bind, MGH Gavino Puggioni, URI

Aim 1	Develop and support infrastructure and processes for sharing data and metadata
Aim 2	Address metadata needs across all STEEP research data products
Aim 3	Provide integrative statistical support
Aim 4	Develop standards for and provide data quality assurance and quality control (QA/QC) across STEEP research projects

Data Management

The initial focus is on developing criteria and workflows for implementing FAIR data management practices across STEEP projects, with a specific emphasis on the curation of data from mass spectrometry analysis - a shared requirement across all STEEP projects.

Data Analysis

Based on our initial work with trainees, we have identified experimental design and reproducible research as major areas of need across all STEEP projects. To address these needs, we are exploring various modes of training and support.

STEEP's organized

LEADERSHIP

DirectorLohmann (University of RI)Co-DirectorGrandjean (Harvard University)

COMMUNITY ENGAGEMENT CORE Schaider (Silent Spring Institution) Diamond (University of RI)	DATA MANAGEMENT AND ANALYSIS CORE Dekker (University of RI) Bind (Mass. General Hospital) Puggioni (University of RI)	RESEARCH EXPERIENCE AND TRAINING COORDINATION CORE Slitt (University of RI) Sunderland (Harvard University)	ADMIN CORE Lohmann (University of RI) Grandjean (Harvard University) Coordinator Lucht (University of RI) Research Translation Coordinator Swift (University of RI)
BIOMEDICAL I Critical Effects of PFAS Grandjean (Harvard University) Weihe (U of the Faroe Islands) Nielsen (U of S. Denmark)	BIOMEDICAL II Properties and key mechanisms of PFAS Slitt (University of RI) Bothun (University of RI)	ENVIRON ENG-SCI I Environmental Exposure to PFAS Sunderland (Harvard University) Vecitis (Harvard University)	ENVIRON ENG-SCI II Detection and Remediation of PFAS Lohmann (University of RI) Schaider (Silent Spring Institute) Vecitis (Harvard University) Boving (University of RI)

Thanks – Questions?

Rainer Lohmann

Philippe Grandjean Emily Diamond

rlohmann@uri.edu

pgrand@uri.edu

diamond@uri.edu

THE UNIVERSITY OF RHODE ISLAND

SCHOOL OF PUBLIC HEALTH Department of Environmental Health

National Institute of Environmental Health Sciences Superfund Research Program

STEEP is funded under award number P42ES027726. More information about STEEP is available at: https://web.uri.edu/steep/

Integrated data management and trainees

Sources, Transport, Exposure & Effects of PFASs university of Rhode Island Superfund Research program

Childhood risks of PFAS

