Superfund Five-Year Review Report Brantley Landfill Island, Mclean County, KY EPA ID: KYD980501019

PREPARED FOR:

United States Environmental Protection Agency Region IV Atlanta, Georgia

PREPARED BY:

EnSafe, Inc. Three Centennial Plaza 895 Central Avenue Suite 610 Cincinnati, Ohio 45202

AUGUST 2002

Five-Year Review Report Table of Contents

List c	of Acronyms
Exec	utive Summary
Five-	Year Review Summary Form
I.	Introduction
II.	Site Chronology
III.	Background Physical Characteristics 3 Land and Resource Use 3 History of Contamination 3
	Initial Response
IV.	Remedial Actions Remedial Action Objective 4 Remedy Description 4 Remedy Selection 4 Remedy implementation 6 System Operations/Operation and Maintenance (O&M) 7
V.	Progress Since the Last Five-Year Review7
VI.	Five-Year Review Process 7 Administrative Components 7 Document Review 7 Data Review 8 Site Inspection 8
VII.	Technical Assessment Technical Assessmnt Summary
VIII.	Issues
IX.	Recommendations and Follow-up Actions10
X.	Protectivness Statement(s)

Five-Year Review Report Table of Contents Cont'd.

XI.	Next Review		• • •		• •	• •	• •	• •		•	• •	• •	• •		• •	•		• •		• •	• •	•	• •		•		• •	• •	• •	•	• •	• •		•	11	
-----	-------------	--	-------	--	-----	-----	-----	-----	--	---	-----	-----	-----	--	-----	---	--	-----	--	-----	-----	---	-----	--	---	--	-----	-----	-----	---	-----	-----	--	---	----	--

Table

Table 1	Five Year Review Follow Up Actions vii
Table 2	Chronology of Site Events
Table 3	Soil Cleanup Levels
Table 4	Groundwater Cleanup Levels5
Table 5	Operation & Maintenance Costs7
Table 6	Five Year Review Follow up Actions11

Attachments

Attachment A	Figures
Attachment B	Preliminary Close Out Report
Attachment C	Groundwater & Air Data Summaries
Attachment D	Site Inspection Attendees List
Attachment E	Site Photos

EPA Five-Year Review Signature Cover Preliminary Information

Site Name: Brandtly Landfill Site	EPA ID: KYD980501019
Region: 04 State: Kentucky	City/Count: Island, McLean County
LTRA: No	Construction Completion Date: June 1998
Who conducted the review? (EPA Region, state, Fe PRP's consultant, EnSafe Inc.	deral Agency, contr)
Date Review Conducted: 07/02-08/02	Date of Site Visit: 04/22/02 & 08/08/02
Whether first or successive review: First Review	
Circle: Statutory Policy	Due Date: 08/01/02
Trigger for this review (name)	Five years from construction initiation (8/01/97)
Recycling, reuse, redevelopment site (highlight):	No

Deficiencies:

None noted.

Recommendations:

Recommendations are listed in the attached report, Section IX, Recommendations.

Protectiveness Statements:

The remedy at the Brantley Landfill Site currently protects human health and the environment. Security measures at the site restrict access and prevent human exposure. Capping measures also prevent direct contact with site contaminants and minimize infiltration into the landfill; thereby reducing the volume of leachate in groundwater. In order for the remedy to be protective in the long-term, deed restrictions need to be established and recorded prohibiting the use of groundwater as a drinking water source and residential habitation on the site.

Other Comments:

None

Signature of EPA Regional Administrator or Division Director, and Date

1/27/02 Richard Date

D. Green, Waste Division Director U.S. EPA, Region 4

iii

List of Acronyms

- AOC Administrative Order by Consent
- ARAR Applicable or Relevant and Appropriate Requirement
- CERCLA Comprehensive Environmental Response, Compensation & Liability Act
- ESD Explanation of Significant Difference
- KNREPC Kentucky Natural Resources and Environmental Protection Cabinet
- MCL Maximum Contaminant Level
- NPL National Priorities List
- O&M Operation & Maintenance
- PRP Potentially Responsible Party
- RA Remedial Action
- RAO Remedial Action Objective
- RBC Risk Based Concentration
- RD Remedial Design
- RI/FS Remedial Investigation/Feasibility Study
- ROD Record of Decision
- SCFs Salt Cake Fines
- SMCL Secondary Maximum Contaminant Level
- TCL/TAL Target Compound List/Target Analyte List
- UAO Unilateral Administrative Order

Executive Summary

The remedy for the Brantley Landfill Site in Island, McLean County, Kentucky included source control via capping of the existing salt cake fine landfill, groundwater monitoring to evaluate shallow and deep groundwater at the site, post-cap air monitoring, institutional controls (site fencing) and deed restrictions.

The site achieved construction completion with the signing of the Preliminary Close Out Report in August 27, 1998. The trigger for this five-year review was the actual start of construction on August 1, 1997.

The review and site inspection conducted for this first five-year review found that the remedy was constructed and operated in accordance with the requirements of the Record of Decision (ROD). An Explanation of Significant Difference will be written for those contingent components of the remedy no longer deemed necessary and those components which have been revised since the ROD was written. The remedy is functioning well to protect human health and the environment.

Because this remedy will result in the potential for the creation of hazardous substance remaining onsite for some time, operation and maintenance activities will continue to be conducted indefinitely. In addition, five-year reviews will need to be conducted for some time. The next scheduled review is August 2007.

Five-Year Review Summary Form

		SITE IDE	NTIFICATION							
Site name (from WasteLAN): Brantley Landfill NPL Site										
EPA ID (from WasteLA	EPA ID (from WasteLAN): KYD980501019									
Region: IV	State: KY	City/Cou	inty: Island/McLean							
	SITE STATUS									
NPL staus: Final										
Remedation status (choose all that apply): Complete										
Multiple OUs? No		Constru	ction completion date: 06/30/98							
Has site been put into	reuse? No									
		REVIE	W STATUS							
Lead agency: USEPA	Region IV, North Sit	te Manager	nent Branch							
Author name: Ms. Gin	ny Gray Davis									
Author title: Vice Pres	sident		Author affiliation: EnSafe Inc.							
Review period:* * 7/01	1/02 to 08/15/02									
Date(s) of site inspect	ion: 08/08/02									
Type of review: Statut	Type of review: Statutory									
Review number: 1 - F	irst five year review	post cont	struction							
Triggering action: Cor	Triggering action: Construction completion									
Triggering action date	(from WasteLAN):	08/01/97								
Due date (five years a	fter triggering actio	n date): 08	3/16/02							

* ["OU" refers to operable unit.]

** [Review period should correspond to the actual start and end dates of the Five-Year Review in WasteLAN.]

Issues:

Kentucky has been experiencing a drought this summer. As a result, several small areas were identified during the site inspection that should be reseeded this fall to maintain proper vegetative cover to control erosion. These areas were identified in the July 2002 O&M Progress Report to USEPA and will be addressed in September or October 2002. Despite these dry conditions, the landfill cover was in excellent condition overall. During inspection of the onsite monitoring wells it was observed that the protective outer casing for leachate monitoring well J12S is corroded through and will be replaced as part of the O&M.

Deed restrictions have not been completed, but will be prepared soon. Because Commonwealth Aluminum does not own this property, these restrictions will have to be coordinated with the owner of the property, Ms. Peggy Drake of Island, Kentucky.

An Explanation of Significant Difference (ESD) needs to be prepared for the site. This ESD should include the following revisions to the remedy outlined in the Record of Decision (ROD):

- Post cap shallow groundwater data confirm that an alkaline recharge trench will not be needed.
- Post cap groundwater and leachate monitoring confirm that a contingent pump & treat remedy will not be needed.
- Post cap FTIR monitoring and access restrictions eliminate the need for abandoned mine shaft air monitoring.
- In 2001, USEPA, during the comment and response period of the Remedial Action Report, verbally agreed to reduce the following: sampling frequency (quarterly to annual); number of monitoring wells for O&M groundwater monitoring, and; parameter list. As a result, the performance standards for groundwater (shallow and deep) need to be revised to reflect those changes.
- The correct performance standard for ammonia is 34 mg/L and therefore should be revised from 34 μg/L listed in the ROD.

Recommendations and Follow-up Actions:

Implement the repairs listed above, finalize deed restrictions, write and submit the ESD, and maintain the current approved O&M monthly inspection program for the landfill.

Table 1 Five-Year Review Follow up Actions										
Action	Responsible Party	Oversight Agency(ies)	Milestone Date	Affects Protectivenes (Y/N)						
				Current	Future					
Re-vegetate bare areas	CAC	USEPA/KNREPC	October 2002	N	Y					
Repair J12S protective casing	CAC	USEPA/KNREPC	October 2002	N	Y					
Write ESD for Site	USEPA	None	FY 2003	N	N					
Prepare and record deed restrictions	CAC	KNREPC	Post-ESD	N	Y					
Maintain O&M Inspections	CAC	USEPA/KNREPC	Ongoing	N	Y					

Protectiveness Statement:

The remedy at the Brantley Landfill Site currently protects human health and the environment. Security measures at the site restrict access and prevent human exposure. Capping measures also prevent direct contact with site contaminants and minimize infiltration into the landfill; thereby reducing the volume of leachate in groundwater. In order for the remedy to be protective in the long-term, deed restrictions need to be established and recorded prohibiting the use of groundwater as a drinking water source and residential habitation.

Five-Year Review Report

I. Introduction

This is the first five-year review of the Brantley Landfill Site (EPA Docket #95-14-C) located in Island, McLean County, Kentucky. The purpose of this review is to determine whether the remedy documented in the Record of Decision (ROD) dated December 14, 1994 is protective of human health and the environment.¹ This report not only documents the findings, but also provides recommendations to address any issues identified with the site during the review process.

This review is statutory pursuant to CERCLA §121² and 40 CFR §300.430(f) (4) (ii)³ which require reviews every five years for those sites where hazardous substances remain onsite post remedial action. The trigger date for completion of this five-year review is the date construction was initiated which was August 1997.

EnSafe Inc., on behalf of Commonwealth Aluminum Concast (CAC), the potentially responsible party (PRP), conducted a five-year review of the remedial actions implemented at the Brantley Landfill Site for USEPA Region IV, North Site Management Branch. This review was conducted from July 2002 through August 2002. Contributors to the review included: Mr. Robert West, Remedial Project Manager, USEPA, Region IV, Mr. Bill O'Steen, USEPA Region IV; Mr. Roger Burden, Site Manager for CAC; Ms. Sandra English, Environmental Services, CAC; Mr. Ben Brantley, Project Geologist, EnSafe Inc.; and, Mr. Ken Logsdon, Project Manager for the Kentucky Natural Resources and Environmental Protection Cabinet.

The selected remedy results in salt cake fines remaining in the landfill at the site. Ammonia and other metals in groundwater remain at levels above those allowed for unrestricted use. Therefore, a review will be conducted every five years until such time that concentrations have decreased to acceptable levels.

¹ - Protectiveness is generally defined in the NCP by the risk range and hazard index.

²- If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five year after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented.

³ - If a remedial action is selected that results in hazardous substances, pollutants or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposures, the leady agency shall review such action no less often than every five years after the initiation of the selected remedial action.

Five Year Review Report Brantley Landfill NPL Site EPA Docket #95-14-C August 15, 2002

II. Site Chronology

Table 2 lists important site events and relevant dates in the site chronology of the Brantley Landfill NPL Site.

Table 2 – Chronology of Site Events Brantley Landfill Site – Island, McLean Count Kentucy							
Event	Date						
Initial discovery of problem or contamination	1979						
Proposed NPL Listing	June 1988						
NPL Final Listing (Federal Register)	February 21, 1990						
Administrative Order by Consent	January 10, 1990						
Remedial Investigation Approved	1994						
Feasibility Study Approved	1994						
ROD Issued	December 14, 1994						
Unilateral Administrative Order	March 31, 1995						
Remedial Design Work Plan Submitted	August 25, 1995						
Remedial Action Work Plan Submitted	June 17, 1997						
Final Remedial Design Approved by USEPA	June 24, 1997						
Remedial Action (Construction) Start	August 1, 1997						
Final Construction Inspection	May 29, 1998						
Final Construction Inspection Report	June 30, 1998						
Preliminary Close Out Report	August 27, 1998						
First Five-Year Review	August 2002						
Operation and Maintenance Plan/Manual	October 12, 1998						
Post-Construction Air Monitoring Conducted	June 11-13, 2000						
Remedial Action Report Submitted	September 18, 2001						
Five Year Review	August 15, 2002						

Five Year Review Report Brantley Landfill NPL Site EPA Docket #95-14-C August 15, 2002

III. Background

The Brantley Landfill Site is an approximate 35-acre parcel located in Island, McLean County, Kentucky. The site was formerly strip-mined to extract coal for commercial sale. In 1977, Barmet Aluminum Corporation (now Commonwealth Aluminum Concast) contracted for the disposal of 250,000 tons of salt cake fines (a by-product of secondary aluminum recycling) in the abandoned mine pit. Following investigation by USEPA Region IV in 1987, the site was listed on the National Priorities List due to elevated ammonia and metals concentrations in site soil.

Physical Characteristics

The Island and McLean County area is situated in the Western Kentucky coal fields region. The coal fields are located in the interior low plateaus province of the interior plains region. This region is characterized by low rolling hills formed of Pennsylvanian age sandstones and Quaternary alluvial deposits from the Green River and its tributaries. The hills rise to a maximum of about 580 feet and the relief totals approximately 200 feet.

The site is located topographically just above the Quaternary alluvium in the Pennsylvanian age Carbondale Formation at an elevation of approximately 400 feet. The Brantley Landfill Site encompasses approximately 4 acres of a 35 acre parcel. The landfill is situated in the center of the site and runs north to south along a gently sloping hillside. Surface water drainage is from the east to west toward the unnamed tributary to Cypress Creek (Attachment A, Figure 1). Shallow groundwater occurs in unconsolidated mine spoil and clay approximately 10-15 feet below ground surface in the unconsolidated sediments above the bedrock. Deep groundwater is found in Pennsylvanian aged sandstones, siltstones, and shales at depths up to 35 feet below ground surface.

Land and Resource Use

The site is bound to the north by KY Highway 85, to the south by the City of Island wastewater treatment plant, to the east by Ms. Peggy Drake's residence (owner of the parcel) and the town of Island, and to the west by an unnamed tributary to Cypress Creek. Land use within a one-mile radius of the site is limited to agricultural and residential with the exception of the wastewater treatment plant to the south.

As stated above, the entire Island area has been heavily mined for coal both above (strip) and underground.

History of Contamination

As stated above, approximately 250,300 tons of salt cake fines were disposed in the landfill during a two-year period starting in 1978. Salt cake fines are a by-product of secondary aluminum recovery that contain salts (sodium and potassium chloride), metals, nitrides, and carbides. When salt cake fines contact water ammonia gas is produced. Odor complaints from area residents sparked investigative efforts by KNREPC and USEPA Region IV in the early 1980s. In 1987, USEPA conducted a Site Inspection (SI) where air, soil, surface water and sediment samples were collected and analyzed. The data revealed ammonia and slightly elevated metals concentrations in soil beneath the landfill. Subsequently, on February 21, 1990, the site was placed on the Final National Priorities List.

Initial Response

In 1990, an Administrative Order by Consent (AOC) was signed by USEPA and Barmet Aluminum Corporation (now CAC). The AOC required Barmet to perform a Remedial Investigation/Feasibility Study (RI/FS) and a response action to minimize the immediate threat to human health and the environment posed by site conditions. The response action as stated in the AOC was as follows: eliminate unrestricted access to the site by securing the landfill areas with a fence or similar barrier. A chain-link fence with three strands of barbed-wire and locking gates was installed around the perimeter of the site on March 7, 1990.

In addition, during the early stages of the RI process, continued erosion and loss of vegetative cover on the landfill cap necessitated some minimal repairs to the southern end of the landfill cap. This area was regarded, capped with clay, and re-vegetated in areas where erosion and salt cake fines were exposed. This cap repair was performed in August/September of 1993.

Basis for Taking Action

The basis for taking action at the site was the presence of hazardous substances (i.e., ammonia, chlorides, aluminum and other metals) detected in site environmental media, primarily soil and groundwater.

IV. Remedial Actions

The Record of Decision for the Site was signed on December 14, 1994.

Remedial Action Objectives

The five principal RAOs for the Site are defined in the Statement of Work as follows:

- Prevent direct ingestion of hazardous constituents of the source material and soil contaminants.
- Prevent exposure through air/groundwater pathways.
- Prevent migration of hazardous components of the source material to the air, groundwater, and underground mine works.
- Prevent ingestion of contaminated water in excess of maximum contaminant levels and secondary maximum contaminant levels (MCLs/SMCLs).
- Prevent further contamination/migration of groundwater at contaminant levels in excess of MCLs/SMCLs.

Remedy Description

The selected remedy described in the Record of Decision included two phases. Phase I addressed surface water infiltration into the landfill and Phase II addressed groundwater issues at the site. In addition institutional controls and deed restrictions were required. Specifically, the selected remedy included:

- Restriction of access to the landfill Site by fencing and posting of signs
- Incorporation of restrictive covenants in property deeds to prevent access to the Site and to prevent installation of drinking water wells onsite.

- Installation of additional piezometers and shallow and deep monitoring wells.
- Construction and maintenance of a new landfill cap which minimizes surface water infiltration.
- Regrading areas of the Site to improve runoff and minimize erosion. Regrading of the Site will eliminate the onsite surface pond at the southern end of the landfill.
- Monitoring groundwater levels and quality in and around the landfill for a period of time. Modeling the expected restoration of landfill groundwater quality.
- Estimating the dissolved contaminant mass, and its rate of migration out of the landfill. Projecting the time for a substantial portion of the residual dissolved contaminant mass to migrate from the landfill. Projecting also the time for the same mass of dissolved contaminants to be removed by short-term leachate collection.
- Contingent installation of a short-term leachate collection system.
- Contingent installation of a long-term leachate collection system.
- Installation of an alkaline recharge trench to restore shallow groundwater adjacent to the landfill.
- Monitoring the natural attenuation of contaminant concentrations in deep groundwater.
- Monitoring groundwater in the coal seam adjacent to the abandoned mine works.
- Monitoring ammonia emissions from the abandoned mine works at closed mine shafts.
- Classification of the shallow and deep aquifers.

The Preliminary Close Out Report, August 1998 summarizes the two phases of remedial action (Attachment B).

Cleanup levels for soil and groundwater at the Brantley Landfill Site were selected based on Maximum Contaminant levels (MCLs), Secondary MCLs, health-based performance standards, and/or background concentrations. The following tables list the cleanup levels established in the ROD.

Table 3 Soil Cleanup Levels, mg/kg					
Aluminum	7E+05				
Arsenic	30				
Iron	7E+04				

Table 4 Groundwater Cleanup Levels, ppb							
Parameter	Shallow Aquifer	Deep Aquifer					
Aldrin	0.04	NA					
Aluminum	7,065-47,075	29,373-36,920					
Arsenic	50	50					
Barium	NA	2,000					
Beryllium	4	4					
Cadmium	5	5					
Chromium	100	100					
Cobalt	2,000	2,000					
Iron	17,080-85,500	42,605-62,275					

Table 4 Groundwater Cleanup Levels, ppb						
Parameter	Shallow Aquifer	Deep Aquifer				
Manganese	1,359-12,100	687-961				
Mercury	2	NA				
Nickel	100	100				
Potassium	NA	1.4E+6				
Silver	100	NA				
Sodium	10,678-144,000	119,250-137,750				
Vanadium	200	200				
Zinc	5,000	5,000				
Ammonia	NA	34				
Chlorides	250	250				
Sulfates	250	250				

Remedy Implementation

USEPA issued a Unilateral Administrative Order (UAO) to Barmet Aluminum on March 31, 1995. The Remedial Design for the Site was approved in June 1997. Remedial construction activities were initiated in August 1997 and concluded in June 1998. Based on pre-remedy data collection, the performance standards for the landfill were modified to include:

- Capping the north end and interior area of the landfill;
- Crowning flat areas in the interior portion of the landfill;
- Repairing erosion damage on the south end of the landfill; and,
- Modifying and improving three drainage ditches onsite, as well as drainage patterns on the southern slope of the landfill.

On October 20, 1997, October 30, 1997 and November 14, 1997, USEPA, the PRP, and the PRP's consultant conducted a pre-final construction inspection of Ditches 1 & 2 and the landfill cap, the interior portion of the landfill cap, and Ditch 3 and the southern slope of the landfill, respectively. These pre-final inspections included a site walk through and punch list of items for corrective action identified. The Final Construction Inspection site visit was conducted on May 29, 1998. A Final Construction Inspection Report submitted on June 30, 1998 verified that all punch list items were completed, all field changes made during construction were documented, and all field testing, analytical results, and inspection sheets were attached. Final grading plans were also provided as an Attachment. USEPA and KNREPC determined that remedial actions were performed according to design specifications. As a result, the Preliminary Close Out Report was issued by USEPA on August 27, 1998.

In June 2000, post-cap air monitoring, by Fourier Transform Infrared Spectrometry (FTIR) was conducted to determine whether ammonia emissions from the landfill had been effectively mitigated or eliminated by the new cap. The data obtained during this monitoring event were 50-60% lower than the values collected during the RI in 1992. This study verified that downwind emissions measured onsite were an order of magnitude below any applicable threshold or ARAR. As a result, no additional air monitoring was recommended to USEPA. An *Air Monitoring Technical Memorandum* was submitted to USEPA on August 2, 2000 documenting these findings.

System Operations/Operation and Maintenance (O&M)

The Operation & Maintenance Plan/Manual, dated October 12, 1998 outlined the O&M activities for the Brantley Landfill Site. There are no remedial systems installed at the Brantley Landfill Site. As a result, the normal O&M activities being conducted are:

- Inspection of the landfill cap and erosion controls;
- Monitoring of existing groundwater wells;
- Sampling of the onsite pond;
- Upkeep of the vegetative cover (i.e., seeding, sowing, mowing); and,
- Driveway, fencing, and signage maintenance.

Records of the O&M activities are documented and filed at Commonwealth's Livia, Kentucky facility. EnSafe reviewed a representative number of files during the site inspection to verify that O&M operations are occurring as approved in the O&M Plan/Manual.

Significant costs (approximately \$32,000.00) were spent in 2000 on Fourier Transform Infrared Spectrometry (FTIR) monitoring to confirm the effectiveness of the landfill cap on air emissions as required by the ROD. The other costs include routine inspections and maintenance (mowing, seeding, etc.), groundwater sampling, laboratory analysis costs, and validation, and reporting. No unanticipated costs have been incurred to date.

Table 5 Operation & Maintenance Costs - Brantley Landfill Site							
From	То	Annual Costs					
1/1/99	12/31/99	\$62,000.00					
1/1/00	12/31/00	\$85,000.00					
1/1/01	12/31/01	\$24,000.00					
1/1/02	06/31/02	\$11,000.00					

V. Progress Since the Last Review

This is the first five-year review for this site post construction completion.

VI. Five-Year Review Process

Administrative Components

USEPA Region IV requested the assistance of the PRP in preparing the first five-year review for the subject Site. Commonwealth Aluminum Concast then solicited the services of the managing consultant, EnSafe Inc. to perform the review. A conference call on July 10, 2002 between USEPA's Remedial Project Manager, Mr. Robert West, CAC's Mr. Roger Burden, and Ms. Ginny Gray Davis and Mr. Ben Brantley of EnSafe Inc. scoped the review and set a tentative schedule for delivery of the draft report. During the conference call, participants agreed upon the following review schedule:

- Document Review July 2002
- Data Review August 2002
- Site Inspection August 8, 2002

Interviews •

•

August 8, 2002 August 16, 2002 September 1, 2002

Draft Five-Year Review Report • Final Five-Year Review Report

Because USEPA representatives, Mr. Femi Akindele (acting RPM) and Mr. Harold Taylor (Kentucky/Tennessee Section Chief) had already performed a site visit while in the area for the Ft. Hartford Stone Quarry Five Year Review on April 22, 2002, they were not present for EnSafe's separate site inspection on August 8, 2002. Mr. Ken Logsdon and Mr. Robert Pugh of Kentucky's Division of Waste Management, Federal Superfund Section were present on August 8, 2002 for the inspection.

Document Review

Documents reviewed during the five-year review included:

- Remedial Investigation/Feasibility Study
- Operation & Maintenance Plan/Manual •
- Remedial Action Report
- Record of Decision •
- Statement of Work
- Unilateral Administrative Order
- Preliminary Close Out Report •
- O&M Groundwater Reports

Data Review

All items included in Attachment C.

Site Inspection

As stated above, USEPA visited and inspected the site on April 22, 2002, concurrent with the fiveyear review for the Ft. Hartford Stone Quarry Site nearby. EnSafe Inc., CAC, and KNREPC conducted the site inspection on August 8, 2002. The purpose of the site inspection was to assess the protectiveness of the remedy, including the adequacy of the selected remedy, specifically: the adequacy of site security measures and the effectiveness of the cap to prevent exposures to salt cake fines. A complete list of inspection attendees is including in Attachment D.

Initially the inspection team met at CAC's Livia, Kentucky facility to discuss the agenda for the inspection and outline the objectives of the review. The team then drove to the site and walked the entire four acre fenced parcel containing the landfill. Overall, the site was well secured and maintained. Photographs were taken in the few small areas where reseeding of the vegetative cover needs to be performed. The site visit was completed in approximately one hour.

Following the site visit, EnSafe and CAC returned to the Livia plant to review pertinent site records and complete the site inspection checklists and interviews. The following items were noted and comments made during the inspection. Figures and photos of the inspection are in Attachment E.

March 15, 1994 October 12, 1998 September 18, 2001 March 31, 1995 March 31, 1995 March 31, 1995 August 27, 1998 Various

- 1. The site was properly secured with chain link fence and locked gates.
- 2. The fence was in excellent condition.
- 3. Signage was visible from Kentucky Highway 85 with a CAC Security phone number.
- 4. The landfill cap appeared to be in excellent condition with no visible erosion present.
- 5. Vegetation was well maintained and mowed.
- 6. One monitoring well through the landfill (J12S) had a corroded outer protective casing. The casing was corroded through and will require replacement.
- 7. O&M inspection records are well maintained and available for review from 1998 through the current inspection (July 2002).

VII. Technical Assessment

Question A: Is the remedy functioning as intended by the decision documents?

The review of documents, ARARs, risk assumptions, and the results of the site inspection indicate that the remedy is functioning as intended by the ROD. Some of the contingencies built into the ROD are not needed and therefore an ESD needs to be written to revise the remedy accordingly. (See Section IV. Remedial Actions for a detailed discussion.

Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives (RAOs) used at the time of the remedy selection still valid ?

There have been no changes in the physical conditions of the site or the adjacent land uses that would potentially affect the protectiveness of the selected remedy. Performance standards for groundwater need to be reduced to reflect post-cap data evaluation and USEPA approval of a reduced monitoring well and parameter list. The RAOs for the site are still valid and in effect at the site.

<u>Question C: Has any other information come to light that could call into question the protectiveness</u> of the remedy?

No other issues have arisen out of the five-year review that call into question the protectiveness of the remedy handed down in the ROD.

Technical Assessment Summary

In summary, no significant issues were noted during the five-year review of the remedial action components. The cap is effective at drastically reducing ammonia emissions well below ARARs and minimizing the infiltration of precipitation.

This limits leachate production and stabilizes groundwater concentrations at the site. Site security measures protect the cap and minimize the potential direct human exposure.

VIII. Issues

Kentucky has been experiencing a drought this summer. As a result, several small areas were identified during the site inspection that should be reseeded this fall to maintain proper vegetative cover to control erosion. These areas were identified in the July 2002 O&M Progress Report to USEPA and will be addressed in September or October 2002. Despite these dry conditions, the landfill cover was in excellent condition overall. When inspecting the monitoring wells onsite, it was it was observed that the protective outer casing for leachate monitoring well J12S is corroded through and should be replaced.

Deed restrictions have not been completed, but will be prepared soon. Because Commonwealth Aluminum does not own this property, these restrictions will have to be coordinated with the owner of the property, Ms. Peggy Drake of Island, Kentucky and KNREPC.

An Explanation of Significant Difference (ESD) will be prepared for the site. This ESD should include the following revisions to the remedy outlined in the Record of Decision (ROD):

- Post cap shallow groundwater data confirm that an alkaline recharge trench will not be needed.
- Post cap groundwater and leachate monitoring confirm that a contingent pump & treat remedy will not be needed.
- Post cap FTIR monitoring and access restrictions eliminate the need for abandoned mine shaft air monitoring.
- In 2001, USEPA, during the comment and response period of the Remedial Action Report, verbally agreed to reduce the following: sampling frequency (quarterly to annual); number of monitoring wells for O&M groundwater monitoring, and; parameter list. As a result, the performance standards for groundwater (shallow and deep) need to be revised to reflect those changes.
- The correct performance standard for ammonia is 34 mg/L and therefore should be revised from 34 μg/L listed in the ROD.

IX. Recommendations and Follow-up Actions

Implement the repairs listed above, finalize deed restrictions, write and submit the ESD, and maintain the current approved O&M monthly inspection program for the landfill. Table 6 summarizes follow-up actions.

Five-Year Review Report Brantley Landfill NPL Site EPA Docket #95-14-C August 15, 2002

Table 6 Five-Year Review Follow up Actions							
Action	Responsible Party	Oversight Agency(ies)	Milestone Date	Affects Protectiveness? (Y/N)			
				Current	Future		
Re-vegetate bare areas	CAC - PRP	USEPA/KNREPC	October 2002	Ν	Y		
Repair J12S protective casing	CAC – PRP	USEPA/KNREPC	October 2002	Ν	Y		
Write ESD for Site	USEPA	None	FY 2003	Ν	Ν		
Propare and record deed restrictions	CAC - PRP	KNREPC	Post-ESD	Ν	Y		
Maintain O&M Inspections	CAC - PRP	USEPA/KNREPC	Ongoing	N	Y		

X. Protectiveness Statement

The remedy at the Brantley Landfill Site currently protects human health and the environment. Security measures at the site restrict access and prevent human exposure. Capping measures also prevent direct contact with site contaminants and minimize infiltration into the landfill; thereby reducing the volume of leachate in groundwater. In order for the remedy to be protective in the long-term, deed restrictions need to be established and recorded prohibiting the use of groundwater as a drinking water source and residential habitation on the site.

XI. Next Review

Because this remedy will result in the potential for creation of hazardous substances, which would remain in site groundwater for some time, five-year reviews will be need to continue to be performed indefinitely. The next five-year review is thus scheduled for August 2007.

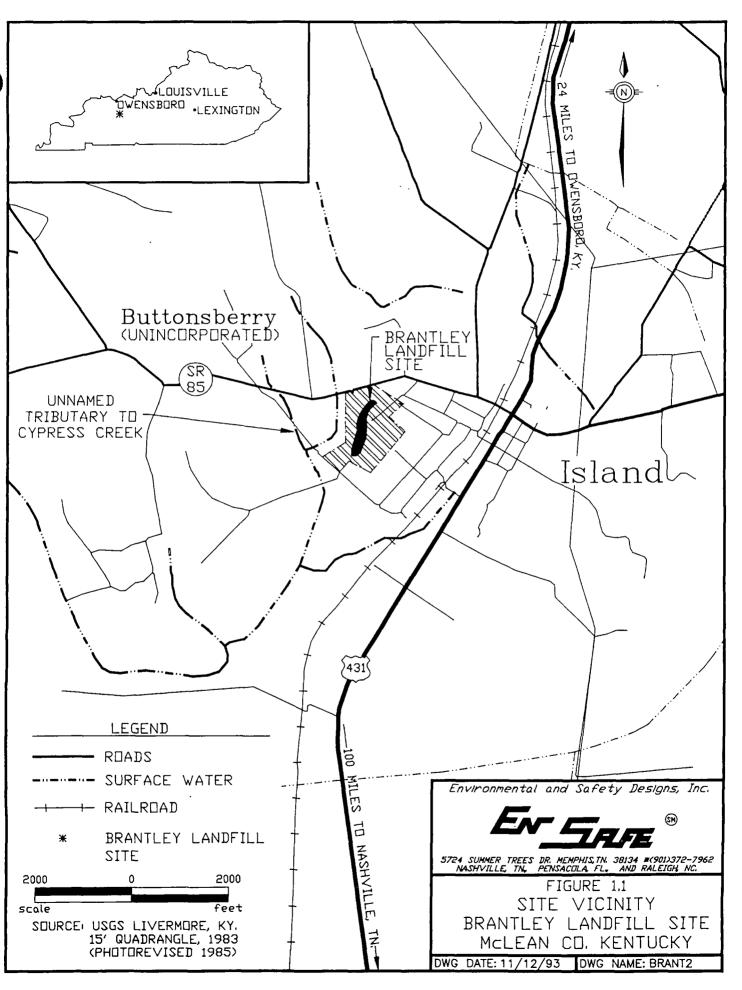
Surface Soil Contaminants of Concern

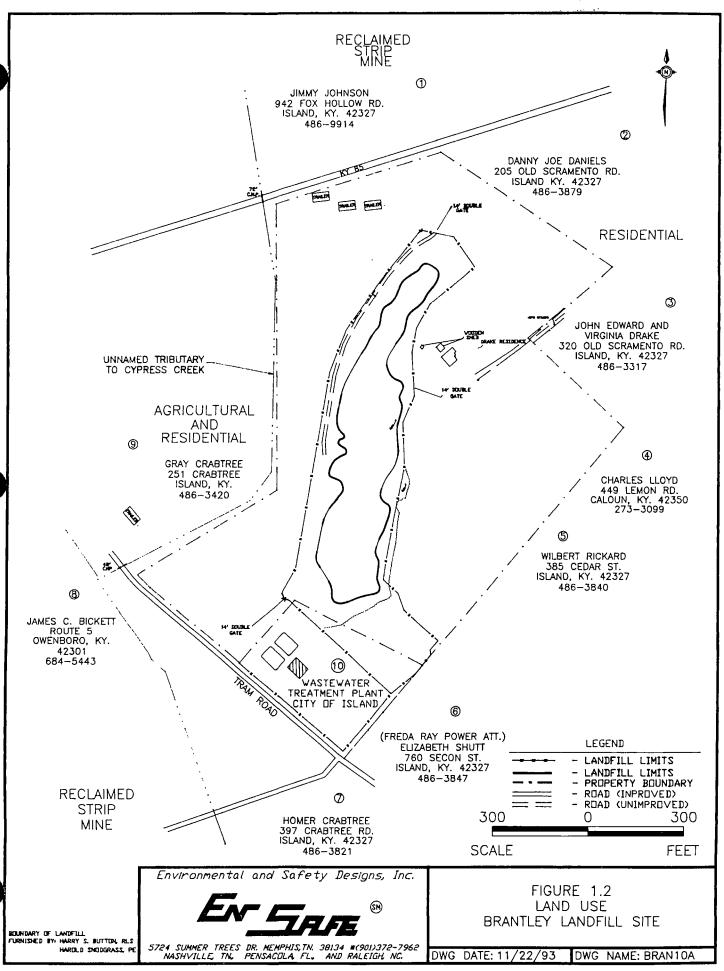
Aluminum Arsenic Chromium Iron Vanadium Notes: Compounds/parameters listed are those which accounted for 99 per and/or hazard computed in the screening risk analysis (Appendix L). Due t disturbed nature of soils, background was defined as any offsite soil sample 12-24 inch depth). Table 3 Surface Water Contaminants of Concern Instream Surface Parameter Water Onsite Pond Benzene X Dieldrin X Aluminum X Arsenic X Iron X Selenium X Sodium X Thallium X Cyanide X Ammonia X Notes: X indicates the surface water source type from which the contaminant concentration was derived. Table 4 Sediment Contaminants of Concern Parameter Instream Sediments Onsite Pond Tetrachlorobenzene X alpha-Chlordane X Heptachlor epoxide Dieldrin X gamma-BHC X delta-BHC X beta-BHC X Aluminum X Barium X Manganese X Nickel X

- Vanadium X
- Notes:

X indicates the sediment source type from which the contaminant concentration was derived.

Table 5


Groundwater Contaminants of Concern


Deep Aquife Shallow Aquifer Wells (Composite Shallow GMW/H13/DG & Data Set) Background GMW/16/DG GMW/K7/DG Heptachlor alpha-BHC Dieldrin Benzene Aluminum alpha-BHC Aldrin Heptachlor Aluminum Arsenic Aluminum Heptachlor beta-BHC Dieldrin epoxide Arsenic Chromium gamma-BHC Aluminum Aluminum Barium Iron Aldrin Antimony Beryllium Chromium Manganese Beryllium Barium Dieldrin Arsenic Cadmium Iron Sodium Chromium Chromium Heptachlor Barium Chromium Manganese epoxide Beryllium Cobalt Nickel Sulfate Aluminum Cadmium Iron Sodium Arsenic Chromium Manganese Chlorides Beryllium Cobalt Nickel Cadium Iron Sodium Chromium Manganese Zinc Ammo Cobalt Nickel Ammonia Iron Sodium Chlorides Manganese Vanadium Sulfates Mercury Sulfates Nickel Silver Sodium Vanadium Zinc Chlorides Sulfate Notes: Shallow aguifer contaminants of concern were derived from a hypo 'worst-case' shallow well. Individual shallow wells did not necessarily produce sample with unacceptable concentrations of each of these parameters

A total of twelve monitoring wells (six shallow and six deep) were installed to monitor the groundwater at the Site. See Figure 6. Two of the shallow wells (GMW/K13/S and GMW/O8/S) represent background in the shallow aquifer. Both wells were installed east of the landfill in apparently unimpacted zones. An additional shallow groundwater monitoring well was installed north of Kentucky Highway 85 in a former strip mine area (GMW/L1). This well location was selected in order to provide some appreciation for shallow groundwater quality in mine spoils absent any possible salt cake fines impacts. Only one deep monitoring well was installed east of the landfill due to the presence of the former underground mine works void in this area. Due to the drilling hazards associated with the underground mine works (i.e. explosion hazards) on and in the vicinity of the Site, it was not possible to establish a definitive upgradient background location in the shale (deep) aquifer.

Attachment A

Figures

Attachment B Preliminary Close Out Report

PRELIMINARY CLOSE OUT REPORT

BRANTLEY LANDFILL SITE ISLAND, KENTUCKY

AUGUST 1998

PREPARED BY U. S. ENVIRONMENTAL PROTECTION AGENCY REGION 4

PRELIMINARY CLOSE OUT REPORT BRANTLEY LANDFILL SITE ISLAND, KENTUCKY

I. INTRODUCTION

This Preliminary Closeout Report (PCOR) documents that the U. S. Environmental Protection Agency (EPA) completed construction activities for the Brantley Landfill site in accordance with *Close Out Procedures for National Priorities List Sites* (OSWER Directive 9320.2-09). Three Pre-Final Inspections were conducted by the potentially responsible party (PRP) on October 20, October 30, and November 11, 1997. EPA and the Kentucky Department for Environmental Protection (the State) conducted a Final Inspection on May 29, 1998, and determined that the PRP constructed the remedy in accordance with remedial design plans and specifications. The PRP has initiated the activities necessary to achieve performance standards and Site completion.

II. SUMMARY OF SITE CONDITIONS

Background

The Brantley Landfill site (the Site) consists of approximately four acres located in Island, McLean County, Kentucky. The Site is bordered to the north by KY Highway 85, to the south by the City of Island Waste Water Treatment Plant, to the east by Mrs. Peggy Drake's residence (owner) and the Town of Island, and to the west by an unnamed tributary to Cypress Creek. The Site was formerly a strip mine pit from which the No. 9 Coal seam was extracted for commercial use. Land use within a 1-mile radius of the landfill is primarily restricted to agriculture and residences.

In 1977, Barmet Aluminum Corporation contacted Mr. Doug Brantley to locate a disposal site for the salt cake fines generated at its Livia, Kentucky, aluminum recycling operation plant. Mr. Brantley, who represented Doug Brantley and Sons, Inc. of Frankfort, Kentucky, located an abandoned mine pit in Island, Kentucky and entered into a leasing arrangement with the owner of the property. In 1978, Kenvinrons, Inc. of Frankfort, Kentucky, an engineering firm, submitted an industrial landfill permit application to the Kentucky Department for Environmental Protection (KDEP), Division of Hazardous Waste and Waste Management. Mr. Brantley stated that during the approximately two-year operation of the Site (May 1978 to November 1980), salt cake fines were the only material disposed of in the landfill with the exception of diesel fuel used as a dust control measure. A total of 250,306 tons of salt cake fines (SCFs) were deposited in the landfill.

In 1979, the Kentucky Division of Air Pollution Control conducted a compliance inspection based on complaints from area residents that unpleasant odors were coming from the landfill during disposal activities. At the time of the inspection, the landfill was found to be in

violation of 401 KAR 63:010, Section 3(1)(c), and 401 KAR 63:010, Section 3(2) regarding: "... failure to take reasonable precautions to prevent particulate matter from becoming airborne and allowing the discharge of visible fugitive dust emissions beyond the property lines of the landfill". During subsequent inspections by KDEP, officials noted vigorous reactions with water and complained of irritating gaseous emissions continuing to be released from the landfill. This discovery prompted KDEP to submit a letter to EPA in 1980 requesting an evaluation of salt cake fines in reference to 40 CFR 261.23 (a)(4), hazardous waste characteristic of reactivity. EPA concluded that the waste should be regulated as a hazardous waste, based on information supplied by KDEP inspection reports. In November 1980, KDEP notified Barmet Aluminum Corporation (PRP) of its intent to regulate salt cake fines as a hazardous waste and requested Barmet to register as a hazardous waste generator under the Resource Conservation and Recovery Act (RCRA). The Brantley Landfill closed on November 15, 1980. The Site was covered, graded and vegetated. In 1981, Barmet Aluminum Corporation filed a civil action in a United States District Court against the EPA and KDEP, protesting their intent to regulate salt cake fines as a hazardous waste. The United States District Court, Western District of Kentucky handed out a decision on August 5, 1981, declaring that salt cake fines are not a hazardous waste material within the meaning of the Solid Waste Disposal Act, 42 U.S.C.S. 6901, et seq. and KRS Chapter 224. Following this ruling, the Brantley Landfill remained under investigation by EPA officials regarding complaints about gaseous emissions at the Site.

In 1987, EPA conducted field investigations at the Brantley Landfill site, collecting air, soil, water, and sediment samples for analysis. Results of the analysis revealed ammonia concentrations slightly higher than background and elevated metals concentrations below the landfill cap. In June of 1988, the Site was proposed for inclusion on EPA's National Priorities List (NPL), and became final on February 21, 1990. On January 10, 1990, EPA and Barmet Aluminum Corporation signed an Administrative Order by Consent (AOC) for Barmet to conduct the Remedial Investigation (RI) and Feasibility Study (FS) at the Site. The AOC also included a requirement for the restriction of access to the Site. In March 1990, Barmet installed a chain-link fence around the Site. The RI/FS at the Brantley Landfill site was conducted between 1992 and 1994. When drilling began in the Summer 1992, unacceptable levels of explosive gases, and ammonia gas readings of approximately 150 ppm, were detected along the eastern perimeter of the landfill where the underground mine works were encountered. In late August/early September 1993, Barmet Aluminum Corporation performed minimal repairs to the landfill cover in order to prevent further erosion and subsequent exposure of source material. These repairs included regrading, clay capping, and replacement of the vegetative cover. The findings of the RI/FS showed that the ground water and soil pathways were the only pathways to pose a risk to human health.

Remedial Construction Activities

On December 14, 1994, EPA issued a Record of Decision (ROD) documenting the Remedial Action (RA) for the Brantley Landfill site. The RA was to be conducted in two phases: Phase I would address surface water infiltration, and Phase II any ground water infiltration. The construction activities described in this PCOR complete Phase I of the remedial action. The selected remedy included:

<u>PHASE I</u>

- Installation of additional ground water monitoring wells, and piezometers;
- Ground water sampling prior to cap construction to: confirm background concentrations; determine the extent of the landfill cap, and alkaline recharge trench; address RI data gaps; and, classify the shallow aquifer using EPA's Ground Water Classification System;
- Surface water sampling of a nearby lake to determine any off-site migration;
- Construction of a landfill cap to prevent contact with source material and to minimize surface water infiltration including elimination of the onsite pond;
- Drainage improvements;
- Installation of an alkaline recharge trench to restore shallow ground water;
- Sampling of source material and landfill leachate to determine the depletion of SCFs; and,
- Ambient air monitoring at closed mine shafts to evaluate any ammonia emissions.

PHASE II

- At least one year of post-construction ground water monitoring to determine the need for a pump-and-treat contingent remedy; and,
- Deep Ground water classification using EPA's Ground Water Classification System.

Cleanup levels for soil and ground water at the Brantley Landfill site were selected based on Maximum Contaminant Levels (MCLs), Secondary MCLs, health-based performance standards, and/or background concentrations. The following tables show the cleanup levels established in the ROD.

Soil Cleanup Levels, mg/kg

ALUMINUM	7E+05
ARSENIC	30
IRON	7E+04

PARAMETER	SHALLOW AQUIFER	DEEP AQUIFER
ALDRIN	0.04	NA
ALUMINUM	7,065 - 47,075	29,373 - 36,920
ARSENIC	50	50
BARIUM	NA	2000
BERYLLIUM	4	4
CADMIUM	5	5
CHROMIUM	100	100
COBALT	2,000	2,000
IRON	17,080 - 85,500	42,605 - 62,275
MANGANESE	1,359 - 12,100	687 - 961
MERCURY	2	NA
NICKEL	100	100
POTASSIUM	NA	1.4E+6
SILVER	100	NA
SODIUM	10,678 - 144,000	119,250 - 137,750
VANADIUM	200	200
ZINC	5,000	5,000
AMMONIA (ppm)	NA	34
CHLORIDES (ppm)	250	250
SULFATES (ppm)	250	250

Ground Water Cleanup Levels, ppb

NA - not applicable

In March 1995, EPA issued a Unilateral Administrative Order to Barmet Aluminum for the Remedial Design (RD) and Remedial Action (RA) at the Brantley Landfill site. Fourteen additional monitoring wells and six piezometers were installed in and around the landfill between September and November 1995. Pre-design data collection occurred from September 1995 through September 1996. Sampling at an offsite lake believed to be a discharge body for ground water entering the mine works at the landfill occurred in September 1995. Salt Cake Fines and leachate sampling was conducted from November through December 1995, and ground water sampling occurred from November 1995 through September 1996.

Analytical results from the offsite lake showed no indication of impacts from the Site. The elevated sulfate concentrations in the lake, however, can be attributed to coal mining and

associated mine spoils/mine drainage. Results of the SCFs and leachate sampling showed a significant volume of water in the northern end of the landfill but not in the southern end. This new finding prompted a modification in the design of the landfill cap as specified in the ROD. The cap design was modified to include crowning and capping the northern end of the landfill, crowning flat areas of the landfill, and repairing erosion and rerouting drainage at the south end of the landfill. Also, in lieu of grading and elimination of the onsite pond, erosion control measures were going to be implemented because regrading of the landfill and subsequent closure of the pond may obstruct the apparent existing drainage in this area resulting in a greater accumulation and diversion of water back into the landfill.

The collection of ground water data prior to the remedial design, including ground water classification and water level monitoring in the landfill, provided a better understanding of the landfill and surrounding area resulting in further modification of the selected remedy. The alkaline recharge trench was eliminated because the high metal concentrations in the shallow mine spoils ground water were attributed to acid mine drainage associated with the mine spoils, and also due to the ground water quality in this area. Ground Water in the vicinity of the Brantley Landfill site has been heavily impacted by surface and underground coal mining. The Ground Water Classification System was used to determine whether the ground water in this area is a potential source of drinking water. The shallow mine spoils ground water west of the landfill and the deep ground water in the shale were classified as Class III, non-potable while the shallow ground water in the sandstone aquifer on the east side of the landfill and the deeper sandstone unit were classified as Class II, or a potential source of drinking water. The shallow sandstone aquifer is believed to be the source of ground water for Island residents before municipal water was introduced to the area in 1969. The Town of Island municipal water system derives its raw water supply from well fields along the Green River approximately three miles north/northeast of the Site.

The Remedial Action was initiated on June 24, 1997, upon EPA's approval of the Remedial Design Report. The PRP conducted remedial activities as planned and no additional areas of contamination were identified. Three Pre-Final Construction Inspections were performed by the PRP at the Brantley Landfill site. The first inspection, performed on October 20, 1997, addressed Ditches 1 and 2, and the north end landfill cap. The second inspection, performed on October 30, 1997, addressed the interior portion of the landfill. The third inspection, performed on November 14, 1997, addressed the southern slope and Ditch 3. The Final Construction Inspection was conducted by EPA and the State on May 29, 1998. The Final Construction Inspection consisted of a walk-through of the entire Site and a review of the punch lists generated from the Pre-Final Inspections. EPA and the State determined that the following RA activities were completed according to design specifications.

• The landfill cap on the northern end of the Site and interior area were in-place. Due to strong ammonia odors during cap construction on the crown of the interior area, clay thickness on this area was increased to 2' thick cap. The western area outside the fenceline was cleared, grubbed, graded, seeded and mulched.

Ditches 1, 2 and 3 were constructed in accordance with specs and a temporary erosion control matting was placed in the bottom and sidewalls. A high density polyethylene liner was placed in the bottom of ditch 2 and a swale directs water from this ditch to a natural stream in the woods to the west of the site. A temporary erosion control matting was also placed in steep areas of the interior area and the swale.

•

.

On the southern slope of the Site, the originally designed riprap chute at the center of the slope was relocated to a natural drainage ditch encountered to the east of the proposed riprap location and an erosion control/turf reinforcement mat was installed.

Topsoil used for the cap was sampled and analyzed for soil contaminants of concern. All analytical results were below the performance standards for soils.

EPA is currently evaluating the pre-design data to determine the need to modify the background concentrations, as stated in the ROD, which in turn changes the performance standards for those contaminants of concern whose cleanup level is based on background concentrations. If there is the need to modify the performance standards, the changes will be documented in an Explanation of Significant Differences (ESD). The next step following the Remedial Action is to conduct a one-time monitoring of air emissions to confirm that ammonia emissions from the landfill have been mitigated by the landfill cap. Ambient air monitoring at an abandoned mine shaft is still pending due to problems in obtaining access to the shaft located on a private property. Also, at least one year of ground water monitoring will be performed to determine the need to implement a contingent remedy. The contingent remedy was originally proposed to address contaminant migration caused by ground water infiltration. The pre-design data shows that ground water entering the landfill is minimal compared to percolation of surface water through the landfill cover but it also suggests that this water is leaving the landfill through the underground mine works. Monitoring of the Crowe Spring, which is a downgradient discharge point for water in the mine works, found no impacts from SCF constituents. Cap measures are expected to significantly decrease the amount of water entering the landfill thus decreasing the amount of water leaving the landfill. Also, the data shows that ground water contamination appears limited to the immediate vicinity of the landfill, and movement of minerelated constituents into areas where coal mining has not occurred would precede the potential migration of any SCF constituents into those areas. For these reasons, the contingent remedy seems less likely, at this point, to be implemented. The post-construction ground water data will determine with certainty the need for a contingent remedy at the Brantley Landfill site.

EPA is currently taking the necessary steps to prepare the ESD that will document all the changes and modifications to the selected remedy that occurred during the remedial design and construction phase, and any changes to the performance standards.

III. DEMONSTRATION OF CLEANUP ACTIVITY QUALITY ASSURANCE AND QUALITY CONTROL

Activities at the Site were consistent with the remedial design, and all work plans were issued to contractors for design and construction of the RA, including sampling and analysis. The RD Work Plan, including a Quality Assurance Project Plan, incorporated all EPA and State quality assurance and quality control (QA/QC) procedures and protocol. EPA analytical methods were used for all validation and monitoring samples during pre-Design activities. Sampling of soil, surface water, and ground water followed the EPA Protocol. The Final Design Report contains documentation of sampling results to date.

The QA/QC program used was rigorous and in conformance with EPA and state standards; therefore, EPA and the State determined that all analytical results are accurate to the degree needed to assure satisfactory execution of the RA and are consistent with the ROD and the RD plans and specifications.

IV. ACTIVITIES AND SCHEDULE FOR SITE COMPLETION

The remedial action activities that remain to be completed for the Brantley Landfill site include a one-time monitoring of air emissions at the Site, conducting at least one year of post-construction monitoring, ambient air monitoring at the mine shaft, approving the Operation and Maintenance Plan (O&M), determining the Operational and Functional (O&F) period, preparing the RA Report, conducting a Five-Year Review, and preparing the Five-Year Review Report, and Final Close-Out Report. This activities will be completed according to the following schedule.

	Estimated Completion	Responsible organization
Approve O&M Plan	09/30/98	EPA/State
Determine O&F Period	09/30/99	EPA/State
Explanation of Significant Differences	To be Determined	EPA
Determine Need for Contingent Remedy	07/13/00	EPA/State
Long-Term Monitoring Completion/Cleanup Verification	To be Determined	EPA/State
Approve RA Report*	09/30/00*	EPA/State
Approve Final Close Out Report*	03/30/01*	EPA
Deletion from NPL*	09/30/01*	ЕРА

* Dependent upon contingent remedy

V. FIVE-YEAR REVIEW

Hazardous substances will remain at the Site above health-based levels after the completion of remedial action. Pursuant to CERCLA section 121(c) and as provided in OSWER Directive 9355.7-02, *Structure and Components of Five-Year Reviews*, May 23, 1991, and OSWER Directive 9355.7-02A, *Supplemental Five-Year Review Guidance*, July 26, 1994, EPA must conduct a statutory five-year review. The Five-Year Review Report will be completed prior to August 2002 (five-years after the first RA onsite mobilization).

Date

Richard D. Green, Director Waste Management Division

Attachment C Groundwater & Air Data Summaries Appendix B

Post-Remedy Effectiveness Monitoring Data Evaluation

Table of Contents

. .

B.0	POST-	REMEDY EFFECTIVENESS MONITORING EVALUATION B-	1
	B.1	Leachate in the Landfill B-	1
	B.2	Groundwater Monitoring Data	7
	B.3	Air Monitoring	0

List of Figures

Figure B-1	Final Grading Plan	. B-3
Figure B-2	Shallow Groundwater Flow Map (3/22/99 Data Set)	B-22
Figure B-3	Deep Groundwater Flow Map (3/22/99 Data Set)	B-23

List of Tables

Table B-1	Post-Remedy Quarterly Monitoring; Shallow Groundwater	B-8
Table B-2	Post Remedy Quarterly Monitoring; Deep Groundwater	B-11
Table B-3	Post-Remedy Quarterly Monitoring; UPS Groundwater .	B-14

List of Graphs

Graph 1A	Post-Remedy Leachate Elevations (J-9S) versus Groundwater Outside the
	Landfill (K-7S & I-10S) B-4
Graph 1B	Pre-Remedy Leachate Elevations (J-9S) versus Groundwater Elevations
	(K-7S, PZ-2, and PZ-4) B-5
Graph 2	Chlorides in Shallow Groundwater Adjacent to Landfill B-16
Graph 3	Chlorides in Deep Groundwater Adjacent to the Landfill B-18
Graph 4	Chlorides and Ammonia at O-8D B-19
Graph 5	Chlorides in UPS Groundwater B-21

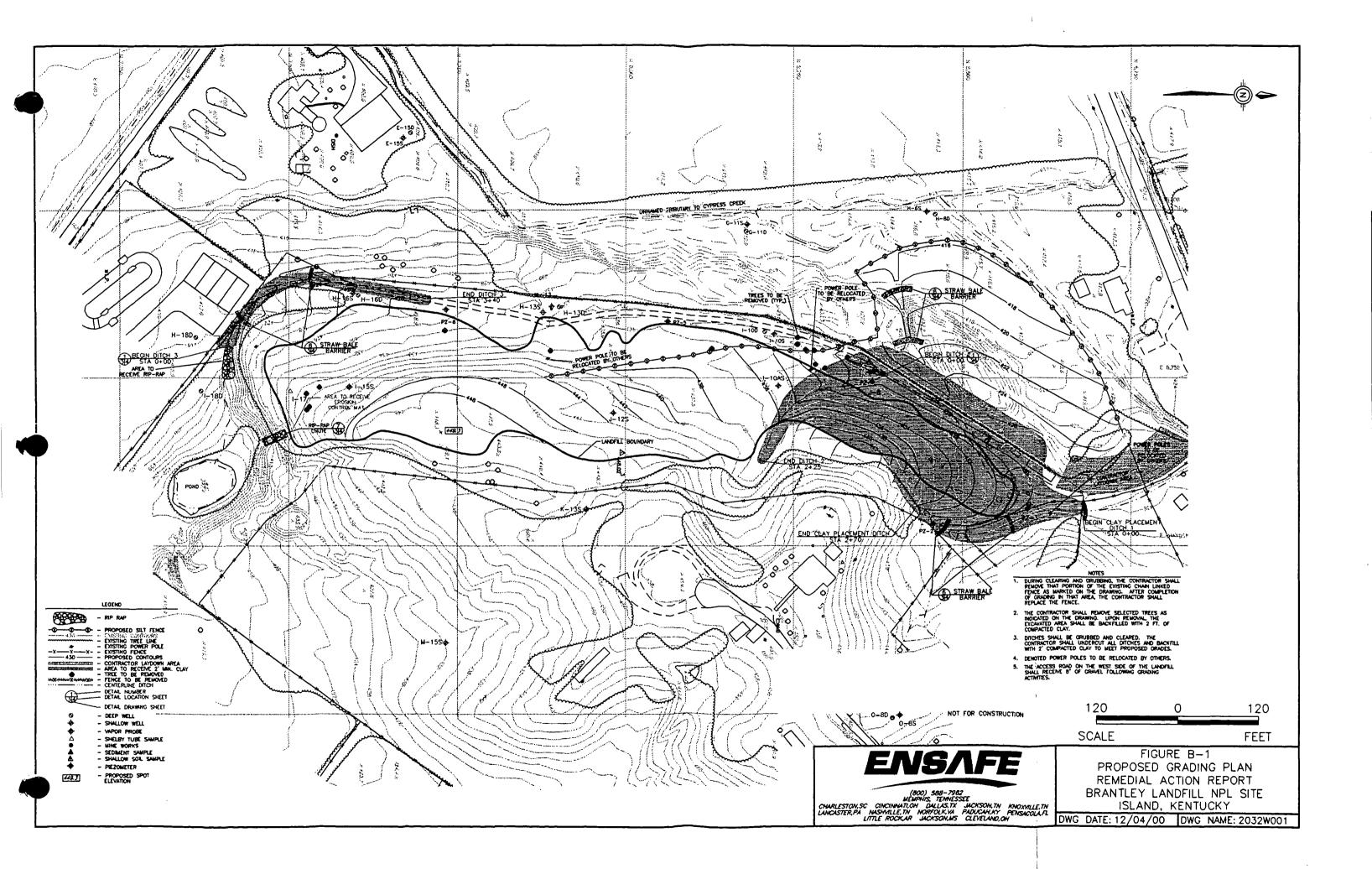
.. -

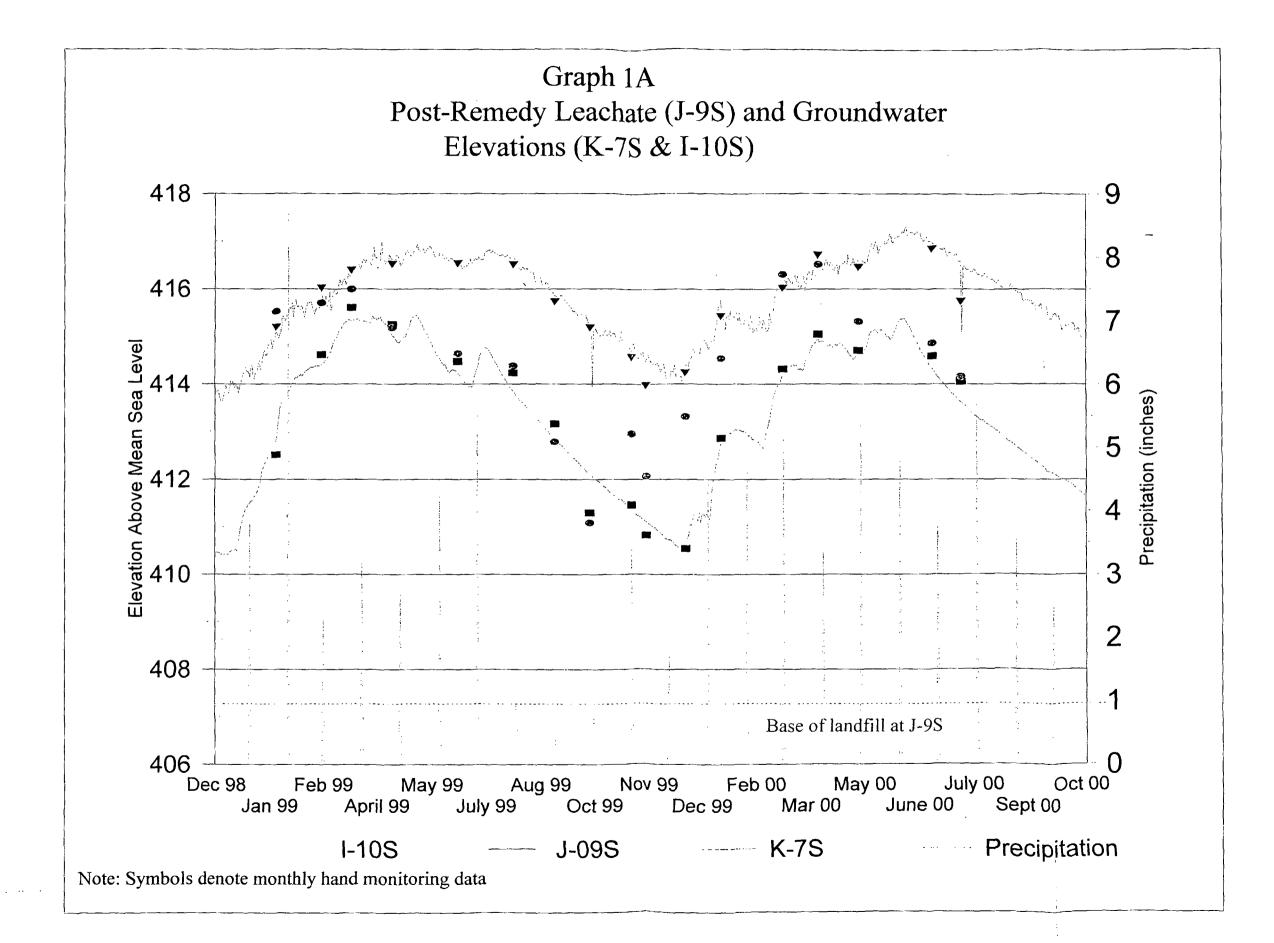
B.0 POST-REMEDY EFFECTIVENESS MONITORING EVALUATION

The effectiveness monitoring specified by the ROD was implemented after Phase I of the remedy to determine whether the contingent remedy was warranted. The post-remedy effectiveness monitoring consisted of the following:

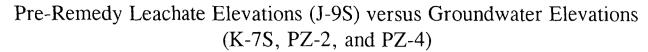
- Two years of monitoring for: (1) leachate levels in the landfill and groundwater outside the landfill, (2) contaminant concentrations in groundwater and (3) downgradient monitoring at the offsite spring for possible impacts from SCF constituents. Monitoring consisted of quarterly sampling and water-level measurement of all monitoring wells and daily water level monitoring of select wells inside and outside the landfill. Groundwater samples were collected quarterly from all monitoring wells and analyzed for the list of performance standards in the ROD, including chlorides, ammonia, aluminum, sodium, and select other metals. Data collection was extended an additional year to further understand the effects of the remedy on concentrations in groundwater.
- One-time monitoring of air emissions using OP-FTIR spectroscopy to confirm that ammonia emissions from the landfill had been effectively mitigated or eliminated by the RA construction activities.

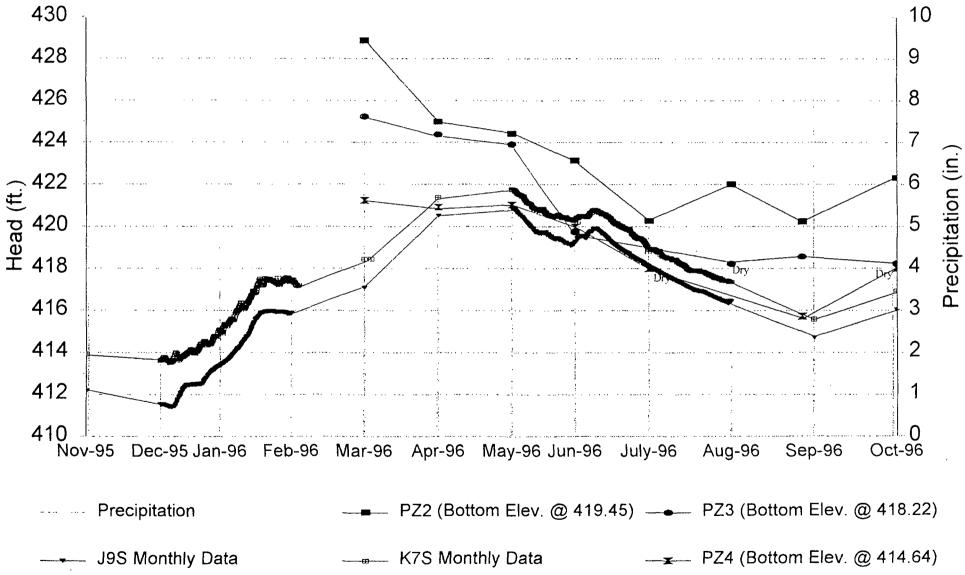
B.1 Leachate in the Landfill


The objective of RA construction was to minimize the amount of water contacting the landfill's contents to reduce further impacts to groundwater and the underground mine works. Hydraulic data presented in the *Final Design Report* (EnSafe, May 1997) showed that groundwater intrusion along the sides of the landfill and infiltration through its cover were conduits for water entering the north end of the landfill. To minimize these conduits, the


capped area included both the north end of the landfill and its west side where shallow groundwater was intruding through the landfill wall.

Post-remedy water levels were recorded daily from wells J-9S, K-7S, and I-10S to determine whether: leachate accumulation has declined since construction and leachate is remaining in the landfill, rather than emptying into shallow groundwater through a "bathtub effect." Well locations are shown on the proposed grading plan (Figure B-1). The final grading plans are provided in the *Final Construction Inspection Report* (EnSafe, 1998) in Appendix A. Leachate has not accumulated in the central and southern sections of the landfill; therefore, these areas were not the focus of the remedial action, except for continued maintenance of the cover.


To show the remedy effects, post-remedy leachate levels, precipitation, and water levels outside the north end of the landfill have been compared with those measured before the remedy. Graph 1A plots post-remedy leachate levels (red line), water levels outside the landfill (blue and green lines), and precipitation (silver spikes) measured over a 22-month period after the remedy was implemented. Water levels were recorded both quarterly (denoted with circles, squares, and triangles) and continuously, as shown with the solid lines. Graph 1B plots the pre-remedy leachate levels, water levels outside the landfill, and precipitation measured over a 12-month period before the remedy was implemented. Water levels were recorded using the same methods employed in the post-remedy as noted on the graph.


Comparing leachate levels before and after the remedy indicates the remedy has been effective in reducing leachate volume in the landfill. Leachate elevations measured before the remedy (Graph 1B) ranged from a winter low of 411.5 feet above mean sea level (msl) to a spring high of 421 feet above msl. Relative to the base of the landfill at J-9S (407 feet above msl), leachate thicknesses ranged from 4.5 feet to 14 feet before the remedy. Leachate levels after

Graph 1B

the remedy (Graph 1A) ranged from a winter low of 410.5 feet above msl to a spring high of 415.5 feet above msl, with thicknesses ranging from 3.5 to 8.5 feet. Comparing maximum leachate thicknesses before and after the remedy indicates a 40% reduction in leachate volume based on the levels recorded at J-09S. Peak high and low leachate levels correspond with the months of May and December during both monitoring periods.

The effects of the remedy are also evident in reduced groundwater elevations outside the landfill. Monitoring well K-7S (blue line on Graph 1A), outside the west side of the landfill's north end, was included in the capped area of the remedial action. Comparing peak high groundwater elevations measured during the post-remedy (417 feet above msl) to the pre-remedy (421.75 feet above msl) indicates a 4.75-foot reduction in water levels outside the landfill (or 30% of the well's saturated thickness)¹. Graphs 1A and 1B also show that groundwater elevations have remained above the leachate levels during most of the monitoring period, indicating that leachate is not exiting the landfill into the shallow groundwater to its west.

The varying pre- and post-remedy leachate and groundwater levels should be evaluated relative to precipitation levels reported during the two monitoring periods to gauge whether the noted reductions are attributable solely to the remedy or to less precipitation. Graph 1A shows that 50.05 inches of precipitation were reported during the last 12 months of post-remedy monitoring compared with 56 inches during the 12 months of *pre-remedy* monitoring (Graph 1B).²

¹ Elevation at the base of well K-7S is approximately 404 feet above msl.

² Precipitation information was provided by Mr. Kenneth Kane, Ohio County weather observer, who resides in Beaver Dam, Kentucky, approximately 25 miles southwest of the site. McLean county does not have a weather observer.

... . .

Although approximately 10% less precipitation fell post-remedy, proportionally, a substantially less amount of leachate (40%) and groundwater (30%) accumulated, indicating that the differences are attributable more to the remedy than varying precipitation. It should be noted that pre- and post-remedy monitoring periods were wetter than the same periods in average years — the average annual precipitation reported for Ohio County is 43 inches, indicating that the recorded leachate and water levels are likely higher than normal.

B.2 Groundwater Monitoring Data

Monitoring wells were sampled for eight quarters after the remedy, starting from December 1998 to July 2000. Groundwater samples were collected and analyzed as presented in the *RD Work Plan* (EnSafe, 1995). Analytical services were provided by RECRA Laboratories, Amherst, New York, until the fourth quarter of monitoring when Savannah Laboratories in Savannah, Georgia, began providing analytical services. Tables B-1 to B-3 summarize the post-remedy monitoring for the three groundwater units at the site — shallow groundwater in the mine spoils and unconsolidated material outside the landfill, deep groundwater in the shale unit beneath the shallow groundwater, and the UPS groundwater east of the landfill. Data from the onsite pond and landfill wells are listed in Table B-1 with the shallow groundwater data, while data from the offsite spring monitoring are listed in Table B-2 with the deep groundwater data.

Shallow Mine Spoils/Unconsolidated Groundwater

Analytical data from shallow wells screened in the unconsolidated sediments and mine spoils adjacent to the landfill are listed in Table B-1. Contaminants exceeded shallow groundwater cleanup levels in three of the four wells adjacent to the landfill.

- Well I-10S, off the west side of the landfill's central section, exceeded the cleanup level for manganese (seven of seven events) and sodium (one of eight events);
- Well H-13S, also west of the landfill's central section, exceeded the cleanup level for cadmium (seven of eight events) and beryllium (five of eight events);

			Post-Rer	nedy Quarterly	Table B-1 Monitoring; S	hallow Ground	water			
Well ID	Analytes	1st Quarter Aug. 1998	2nd Quarter Dec. 1998	3rd Quarter March 1999	4th Quarter June 1999	5th Quarter Sept. 1999	6th Quarter Dec. 1999	7th Quarter March 2000	8th Quarter July 2000	Performance Standards
E15S	Aluminum	38	50	225	51.5 J	75.1 J	14.4	6	83	7,065 - 4,7075 (c)
:	Sodium	75,500	71,600	71,300 J	77,100	70,200	39,300	76,000	76,000	10,678 - 144,000 (c)
	Ammonia	3,200	3,300 J	3,000 J	3,300	1,600	3,200 J	3,900	3,100	NA
	Chloride	23,900	22,700 J	20,800	22,300	24,000	23,000	22,000	23,000	250,000 (b)
G11S	Aluminum	1,270	3,900	830	2,000 J	3,490	5,230	2,700 J	5,400 J	7,065 - 47,075(c)
	Sodium	62,500	100,000	56,500 J	69,700	58,600	57,200	55,000	58,000	10,678 - 144,000(c)
	Ammonia	440	660	280 J	71	300	390 J	310	330	NA
	Chloride	31,300	28,400	26,300	30,200	33,000	32,000	29,000	33,000	250,000 (b)
H06S	Aluminum	466 J	429	848	427 J	574	33.2 J	810 J	1,100 J	7,065 - 47,075(c)
	Sodium	85,800	80,000	76,100 J	90,300	75,900	115,000	68,000	76,000	10,678 - 144,000(c)
	Ammonia	ND	ND	ND	ND	ND	240 J	ND	ND	NA
	Chloride	25,800 J	27,000 J	23,500	23,600	27,000	18,000	24,000	28,000	250,000 (b)
H13S	Aluminum	7,110 J	566 J	15,600	4,750 J	9,010	20,000 J	14,000 J	14,000	7,065 - 47,075(c)
(adjacent to	Beryllium	2.3 J	1.5	8	4.9 J	4 J	8.6	5.6	7.5 J	4 (a)
landfill)	Cadmium	6.8	2.8 J	24.4	6.2	5.4	14	9.7	7.4	5 (a)
	Sodium	29,900 J	44,000	24,800 J	31,700	34,700	25,000	21,000	23,000	10,678 - 144,000 (c)
	Ammonia	240	100 J	380 J	230	350	190	330	370	NA
	Chloride	42,300	48,200	31,300	36,800	36,000	35,000	24,000	27,000	250,000 (b)

:

			Post-Rer	nedy Quarterly	Table B-1 Monitoring; S	hallow Ground	water			
Well ID	Analytes	1st Quarter Aug. 1998	2nd Quarter Dec. 1998	3rd Quarter March 1999	4th Quarter June 1999	5th Quarter Sept. 1999	6th Quarter Dec. 1999	7th Quarter March 2000	8th Quarter July 2000	Performance Standards
H16S	Aluminum	647 J	6,340	774	418 J	820	7,500 J	880 J	710	7,065 - 47,075 (c)
(adjacent to	Iron	42,300	24,000 J	21,300	22,500 J	32,100	23,000 J	26,000	33,000 J	17,080 - 85,500 (c)
landfill)	Sodium	383,000 J	337,000 J	223,000 J	352,000	249,000	130,000	150,000	170,000	10,678 - 144,000 (c)
	Ammonia	8,200	6,500 J	4,400 J	1,000	5,600	2,700	4,600	5,300	NA
	Chloride	22,7000	323,000	136,000	106,000	220,000	110,000	110,000	160,000	250,000 (c)
K07S	Aluminum	256 J	165 J	919	28.2	314	136 J	6	110 J	7,065 - 47,075 (c)
(adjacent to	Ammonia	100	66 J	300 J	940	81	39 J	210	85	NA
landfill)	Chloride	82,400	75,800	51,100	63,400	83,000	79,000	72,000	75,000	250,000 (b)
I10S	Aluminum	3,070	1,590 J	2,590	633 J	3,130	2,300	2,600 J	4,100	7,065 - 47,075 (c)
(adjacent to	Iron	15,700 J	17,200	10,100	1,290 J	4,080	13,000	7,000	2,800 J	17,080 - 85,500 (c)
landfill)	Manganese	85,000 J	61,700	76,000	76,000	65,600	NA	53,000	77,000 J	1,359 -12,100 (c)
	Sodium	93,800	78,600	147,000 J	77,600	95,800	81,000	70,000	98,000	10,678 - 144,000 (c)
	Zinc	ND	ND	ND	ND	ND	310	ND	ND	5,000 (b)
	Ammonia	2,100	1,900 J	1,600 J	1,600	1,400	1,600	1,300	1,200	NA
	Chloride	101,000	111,000	119,000	130,000	120,000	90,000	96,000	110,000	250,000 (b)
Pond	Sođium	3,790 J	42,000	11,500 J	1,580 J	2,850	3,460	1,500	3,100	10,678 - 144,000 (c)
	Ammonia	260	1,600 J	61 J	53	210	930 J	69	4,500	NA
	Chloride	8,400	15,200	3,000	3,500	6,300	5,300	2,400	5,600	250,000 (b)
LIS	Aluminum	3,750	432 J	630	802 J	629	400	1,600 J	820 J	7,065 - 47,075 (c)

Remedial Action Report Revision 1 Brantley Landfill NPL Site Appendix B: Post-Remedy Effectiveness Monitoring Evaluation September 18, 2001

			Post-Rei	medy Quarterly	Table B-1 Monitoring; S	hallow Ground	water			
Well ID	Analytes	1st Quarter Aug. 1998	2nd Quarter Dec. 1998	3rd Quarter March 1999	4th Quarter June 1999	5th Quarter Sept. 1999	6th Quarter Dec. 1999	7th Quarter March 2000	8th Quarter July 2000	Performance Standards
Background	Sodium	201,000	175,000	182,000 J	152,000	159,000	158,000	150,000	170,000	10,678 - 144,000(c)
	Ammonia	770	190	260 J	230	130	68 J	170	95	NA
	Chloride	8,600	7.400 J	7,300	8,300	8,500	8,600	18,000	8,500	250,000 (b)
I15S	Aluminum	NA	NA	9,560	NA	NA	NA	13,000 J	NA	7,065 - 47,075 (c)
(in landfill)	Sodium	NA	NA	58,200,000 J	NA	NA	NA	62,000,000	NA	10,678 - 144,000 (c)
	Ammonia	NA	NA	11,400,000 J	NA	NA	NA	330,000	NA	NA
	Chloride	NA	NA	108,000,000	NA	NA	NA	71,000,000	NA	250,000 (b)
J09S	Aluminum	2,620	187,000	4,130	2,320	16,700	12,000 J	4,000 J	3,000 J	7,065 - 47,075 (c)
(in landfill)	Sodium	14,200,000	24,000,000	36,200,000	4,170,000	45700000	70000000	77,000,000	9,100,000	10,678 - 144,000 (c)
	Ammonia	625,000	1,100,000 J	1,010,000 J	354,000	870,000	1,200,000	1,100,000	630,000	NA
	Chloride	21,300,000	96,400,000	61,000,000	6,900,000	50,000,000	130,000,00	8,900,000	24,000,000	250,000 (b)
J12S	Aluminum	133,000 J	NA	25,900	148,000	421,000	65,000 J	15,000 J	6,100 J	7,065 - 47,075 (c)
(in landfill)	Sodium	36,200,000 J	NA	35,800,000 J	29,600,000 J	32,400,000	33,000,000	41,000,000	8,200,000	10,678 - 144,000 (c)
	Ammonia	2,160,000	NA	2790000 J	2,300,000	2,400,000	2,300,000	1,800,000	1,800,000	NA
	Chloride	64,000,000	NA	62,900,000	632,000	57,000,000	62,000,000	46,000,000	49,000,000	250,000 (b)

Notes:

All units are in micrograms per liter ($\mu g/L$).

Bold = Concentrations that exceed the maximum of the performance standard range (where applicable).

NA = Not analyzed due to the lack of water/leachate or not applicable due to the absence of a ROD-specified cleanup level for the analyte.

- ND = Not detected.
- J = Estimated value.
- (a) = Maximum Contaminant Level (MCL).
- (b) = Secondary Maximum Contaminant Level (SMCL).
- (c) = Background Concentration.

					Tał	ole B-2				
				Post Remedy	y Quarterly Mo		Groundwater			
Well ID	Analytes	1st Quarter Aug. 1998	2nd Quarter Dec. 1998	3rd Quarter March 1999	4th Quarter June 1999	5th Quarter Sept. 1999	6th Quarter Dec. 1999	7th Quarter March 2000	8th Quarter July 2000	Performance Standards
08D	Aluminum	803 J	590 J	4,220	1,080	507	31,000 J	1,400J	310	29,373 - 36,920 (c)
	Chromium	53.2	50.1	303	NA	27.2	500 J	15	91	100 (c)
	Iron	4,810 J	1,610	9,720	1,730	780	43,000 J	1,800	520J	42,605 - 62,275 (c)
	Sodium	2,550,000	2,080,000	152,000 J	1,710,000 J	1,880,000 J	2,200,000	1,600,000	1,700,000	119,250 - 137,750 (c)
	Ammonia	32,300	30,300 J	23,800 J	19,800	16,000	16,000	15,000	9,700	34,000 (d)
	Chloride	5,460,000	5,240,000	4,780,000	3,430,000	4,300,000	4,900,000	4,500,000	3,500,000	250,000 (b)
E15D	Aluminum	38	200 J	829	49.6 J	77.8 J	14.4	6	19J	29,373 - 36,920 (c)
	Sodium	67,000	64,300	67,900 J	66,500	64,200	64,800	61,000	66,000	119,250 -137,750 (c)
	Ammonia	2,300	2,200 J	2,200 J	2,500	3,100	1,600 J	1,900	1,600	34,000 (d)
	Chloride	18,200	19,900 J	1,6800	18,900	16,000	16,000	15,000	16,000	250,000 (b)
GIID	Aluminum	200 J	18,300 J	292	286 J	272	654	1,000 J	810J	29,373 - 36,920 (c)
	Sodium	133,000	128,000	148,000 J	152,000	163,000	125,000	140,000	96,000	119,250 - 137,750 (c)
	Ammonia	360	640 J	360 J	410	490	210 J	510	310	34,000 (d)
	Chloride	17,900	19,900 J	16,800	19,300	22,000	24,000	20,000	27,000	250,000 (b)
H06D	Aluminum	38	4,220 J	1,040	130 J	567	1,410	26 J	36J	29,373 - 36,920 (c)
	Sodium	132,000	113,000	125,000 J	126,000	109,000	108,000	99,000	110,000	119,250 -137,750 (c)
	Ammonia	360	400 J	380 J	330	270	240 J	340	290	34,000 (d)
	Chloride	14,900	16,100 J	15,000	16,900	19,000	19,000	18,000	18,000	250,000 (b)

			·····		Tal	ole B-2		<u></u>		
				Post Remed	y Quarterly Mo		Groundwater			
Well ID	Analytes	1st Quarter Aug. 1998	2nd Quarter Dec. 1998	3rd Quarter March 1999	4th Quarter June 1999	5th Quarter Sept. 1999	6th Quarter Dec. 1999	7th Quarter March 2000	8th Quarter July 2000	Performance Standards
H13D	Aluminum	38	430 J	190	20	331	6,940	130 J	1,600J	29,373 - 36,920 (c)
	Sodium	157,000 J	156,000 J	318,000 J	152,000 J	148,000	155,000	130,000	140,000	119,250 - 137,750 (c)
	Ammonia	810	690 J	740 J	950	930	610 J	380	830	34,000 ⁽ d)
	Chloride	225,000	219,000	247,000	288,000	360,000	340,000	220,000	240,000	250,000 (b)
H16D	Aluminum	1,890 J	4,310	50	265 J	885	910 J	540 J	650	29,373 - 36,920 (c)
	Iron	154,000	121,000 J	151,000	121,000 J	186,000	170,000	170,000	190,000 J	42,605 - 62,275 (c)
	Manganese	103,000	62,000 J	88,500	86,9000	97,000	88,000	70,000	92,000J	687 - 961 (c)
1	Sodium	2,000,000J	1,600,000	1,320,000J	150,000	2,010,000	1,700,000	1,200,000	1,500,000	119,250 -137,750 (c)
	Zinc	791	284	713	363 J	759 J	800	570	610J	5,000 (b)
	Ammonia	88,400	69,800 J	84,800 J	69,600	90,000	79,000	83,000	83,000	34,000 (d ⁾
	Chloride	2,740,000	2,660,000	2,200,000	2,060,000	3,600,000	2,900,000	2,600,000	2,600,000	250,000 (b)
H18D	Aluminum	38	159 J	107	30	85.6 J	14.4	6	8.2J	29,373 - 36,920 (c)
	Sodium	352,000	276,000	241,000 J	271,000	277,000	285,000	240,000	270,000	119,250 -137,750 (c)
	Ammonia	1,500	1,600 J	1,500 J	1,600	1,300	1,400 J	1,500	1,400	34,000 (d ⁾
	Chloride	899,000	879,000	856,000	843,000	960,000	1,000,000	950,000	1,000,000	250,000 (b)
I10D	Aluminum	1,660 J	1,080	449	5,220	259	22.3 J	300 J	4,600J	29,373 - 36,920 (c)
	Sodium	160,000 J	239,000 J	549,000 J	233,000 J	220,000	205,000	310,000	260,000	119,250 -137,750 (c)
	Zinc	ND	ND	ND	ND	ND	ND	17 J	ND	5,000 (b)
	Ammonia	1,900	1,000	1,000 J	1,000 J	700	680 J	1,300	40,000	34,000 (d ⁾
	Chloride	153,000	396,000	307,000	252,000	320,000	260,000	580,000	450,000	250,000 (b)

<u>ر المعالم الم</u>					· · · · · · · · · · · · · · · · · · ·			<u></u>		
				Post Romada	Tal y Quarterly Mo	ole B-2 mitoring: Deen	Croundwater			
		1-1-0			<u> </u>					· · · · · · · · · · · · · · · · · · ·
Well ID	Analytes	1st Quarter Aug. 1998	2nd Quarter Dec. 1998	3rd Quarter March 1999	4th Quarter June 1999	5th Quarter Sept. 1999	6th Quarter Dec. 1999	7th Quarter March 2000	8th Quarter July 2000	Performance Standards
I18D	Aluminum	933 J	1,500 J	4,480	4,590 J	5,020	3,700 J	2,000 J	1,400	29,373 - 36,920 (c)
	Iron	7,960 J	1,4200	2,6100	12,800 J	19,700	15,000 J	17,000	22,000J	42,605 - 62,275 (c)
	Sodium	467,000	444,000	319,000 J	77,200	323,000	330,000	100,000	120,000	119,250 - 137,750 (c)
	Ammonia	3,500	2,300 J	1,40 O J	86	1,400	2,100	850	970	34,000 (d ⁾
	Chloride	1,130,000	1,180,000	1,120,000	357,000	900,000	810,000	340,000	340,000	250,000 (b)
K7D	Aluminum	200 J	3,400 J	120	84.5 J	14.4	14	6	28	29,373 - 36,920 (c)
	Iron	29,100	41,100	30,700	47,400 J	34,300	36,000 J	37,000	34,000J	42,605 - 62,275 (c)
	Sodium	NA	4,230,000	3,680,000 J	3,980,000	3,780,000	4,100,000	3,300,000	· 3,600,000	119,250 - 137,750 (c)
	Ammonia	11,700	10,200 J	13,500 J	9,600	8,200	11,000	11,000	11,000	34,000 (d ⁾
	Chloride	14,500,000	24,100,000	12,400,000	12,800,000	18,000,000	18,000,000	13,000,000	15,000,000	250,000 (b)
SPRING	Aluminum	NA	NA	NA	23.9	NA	NA	NA	NA	29,373 - 36,920 (c)
	Sodium	NA	NA	NA	69,200 J	NA	NA	NA	NA	119,250 - 137,750 (c)
	Ammonia	NA	NA	NA	2,300	NA	NA	NA	NA	34,000 (d)
	Chloride	NA	NA	NA	14,600	NA	NA	NA	NA	250,000 (b)

Notes:

All units are in micrograms per liter ($\mu g/L$).

Denotes exceedance of performance standard. Bold =

Not detected. ND =

- NA Not applicable due to the absence of water. =
- Estimated value. J =
- NA = Not applicable due to the absence of water.
- (a) =
- Maximum Contaminant Level (MCL). Secondary Maximum Contaminant Level (SMCL). (b) =
- (c) Background Concentration. =
- (d) Health Advisory Limit. =

				Post-Reme		ole B-3 onitoring; UPS Gi	roundwater			
Well ID	Analytes	1st Quarter Aug. 1998	2nd Quarter Dec. 1998	3rd Quarter March 1999	4th Quarter June 1999	5th Quarter Sept. 1999	6th Quarter Dec. 1999	7th Quarter March 2000	8th Quarter July 2000	Performance Standards
008S	Aluminum	109 J	126 J	340	108 J	240	107 J	130 J	170 J	7,065 - 47,075(c)
	Sodium	15,600	18,100	19,100 J	15,300	15,000	14,300	14,000	15,000	10,678 - 144,000(c)
	Ammonia	ND	ND	67 J	ND	ND	17	ND	ND	NA
	Chloride	19,900	20,000	15,200 J	17,900	18,000	20,000	18,000	22,000	250,000(b)
K13S	Aluminum	1,350	831 J	1,000	591 J	879	873	1,300 J	1,100 J	7,065 - 4,7075(c)
	Sodium	210,000	80,800	79,600 J	86,600	78,900	76,300	69,000	71,000	10,678 - 144,000(c)
	Ammonia	ND	ND	ND	ND	ND	26 J	ND	ND	NA
	Chloride	42,800	42,300	29,400	33,600	35,000	36,000	43,000	24,000	250,000(b)
M15S	Aluminum	125 J	131 J	500	384 J	1,730	198 J	130 J	370 J	7,065 - 47,075(c)
	Sodium	14,400	17,700	19,600 J	12,700	13,800	9,140	18,000	16,000	10,678 - 144,000(c)
	Ammonia	ND .	ND	ND	ND	ND	34 J	ND	ND	NA
	Chloride	5,600	5,400	6,000	5,600	6,100	5,900	7,100	7,200	250,000(b)

Notes:

All units are in micrograms per liter ($\mu g/L$).

Bold = Denotes exceedance of performance standard.

ND = Not detected.

J = Estimated value.

NA = Not applicable due to the absence of a ROD-specified cleanup level for the analyte.

(a) = Maximum Contaminant Level (MCL).

(b) = Secondary Maximum Contaminant Level (SMCL).

(c) = Background Concentration.

• Well H-16S, outside the south end of the landfill, exceeded the cleanup level for sodium (seven of eight events) and chloride (one of eight events). Sodium also exceeded its cleanup level (eight of eight events) in background monitoring well L-01S, screened in mine spoils upgradient of the landfill.

Chlorides have been selected to graphically illustrate the pre- and post-remedy contaminant data based on their definite association with salt cake fines and their high solubility. Graph 2 compares chloride concentrations in shallow groundwater adjacent to the landfill's west side before and after the remedy. The most notable trend is the decrease in chlorides in well H-16S, the only shallow well to have consistently exceeded its cleanup level (250 mg/L) due to an anomalous increase in concentrations before the pre-remedy monitoring was implemented. Chloride concentrations in seven of eight post-remedy monitoring events are below chloride's cleanup level. Post-remedy chloride trends for the remaining wells are generally consistent with the pre-remedy trends and remain below the chloride cleanup level. The shallow groundwater in the mine spoils/unconsolidated material outside the landfill has been classified as Class III groundwater, not a potential source of drinking water.

Surface water data from the pond (Table B-1) has been compared to the shallow groundwater cleanup levels to gauge whether any impacts are due to the landfill. After eight quarters of monitoring, there's no evidence of site-related impacts to the pond. Continued monitoring of the pond is not planned during the O&M monitoring due to the absence of site related constituents.

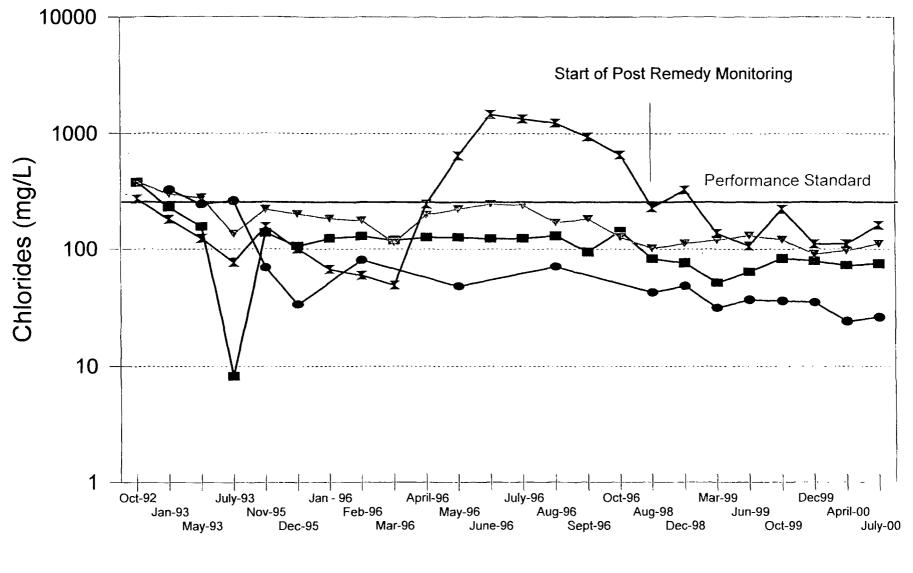

Deep Groundwater

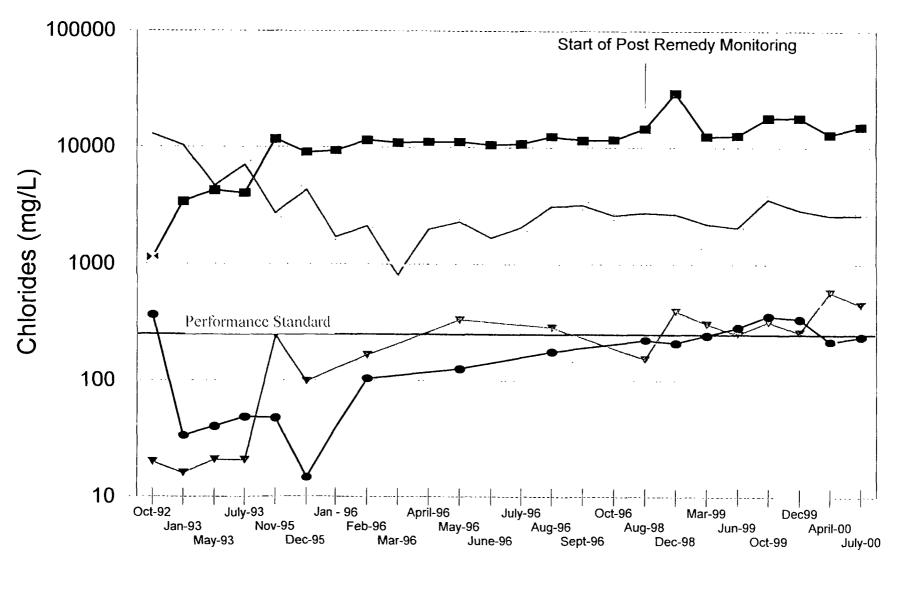
Table B-2 shows that deep groundwater impacts are limited to wells immediately adjacent to the landfill (i.e., K-7D, I-10D, H-13D, H-16D, H-18D and I-18D). Contaminants in these wells that exceeded the cleanup levels were chloride and sodium (all the above wells), ammonia (H-16D), iron (H-16D), manganese (H-16D), and chromium (O-8D). Sodium was the only contaminant identified in the downgradient wells west of the landfill to exceed the cleanup level. In monitoring well G-11D, sodium exceeded the cleanup level in four of eight sampling events.

Chlorides in Shallow Groundwater

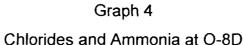
Adjacent to Landfill

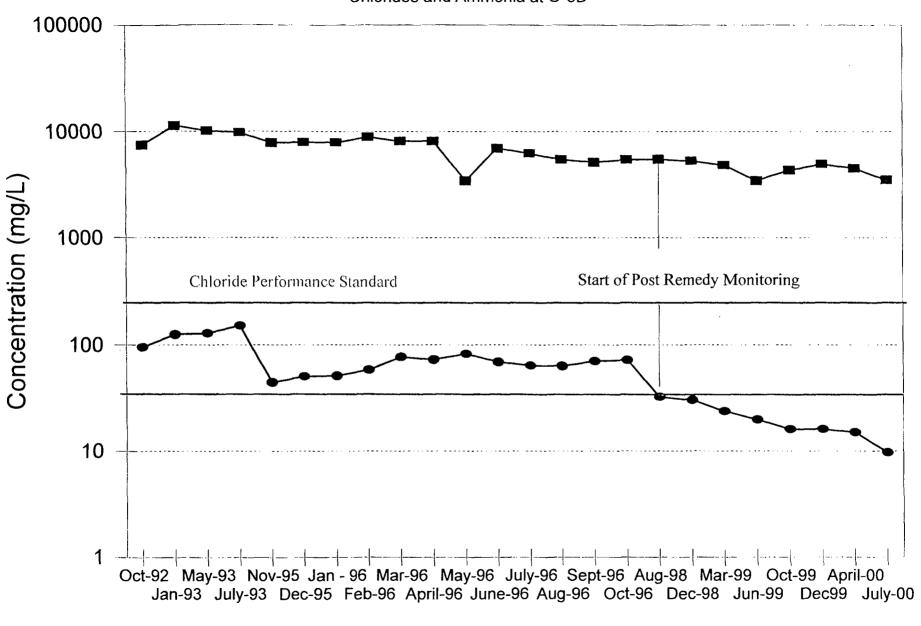
However, the absence of other indicator parameters at similarly high concentrations and the presence of sodium in background well L-1S at similar concentrations indicates that the sodium exceedances are not site-related, but naturally occurring.

Chlorides detected in deep groundwater adjacent to the landfill (before and after the remedy) are plotted on Graph 3. The effects of the remedy are not yet evident in the deep groundwater likely due to the relatively short period of post-remedy monitoring (two years) compared with the 20 years in which the deep groundwater has been impacted by the landfill. Many of the chloride trends established before the remedy have continued through the effectiveness monitoring period — a *general decrease* is noted in wells outside the southern end of the landfill (H16D and I-18D), while a *general increase* is noted in wells outside the central (H-13D and I-10D) and north end of the landfill (K-7D). The continued decreasing chloride and ammonia trend in groundwater at O-8D (Graph 4) is significant in the effectiveness monitoring data. O-8D is screened immediately below a No. 9 coal pillar, east of the landfill, and is thought to representative of leachate leaving the landfill via the underground mine works. As evident in Graph 4, chloride and ammonia mass leaving the landfill continue to decline, particularly the ammonia mass, which has decreased markedly to below the performance standard since the remedy.


Data from the offsite Crowe Spring, which is fed by water in the underground mine works, was monitored through the post-remedy period; however, it was dry during seven of the eight sampling events.³ Again, using chloride as an indicator parameter, the chloride concentration detected during the fourth quarter (14.6 mg/L) was consistent with pre-remedy concentrations (15.8 to 29.9 mg/L), indicating this area of the mine works has not been impacted by leachate leaving the

³A network of underground mine works struck by Sextet Mining Company in June 1999 released an estimated 30 million gallons of water into the Sextet Mine (Owensboro Messenger Inquirer, June 9, 1999). The lack of water at the Crowe's spring, which is approximately 0.7 mile updip of the Sextet mine, may be the result of the mining activities.


Graph 3


Chlorides in Deep Groundwater

Adjacent to Landfill

----- K-7D ----- I-10D ----- H-13D ----- H-16D I-18D

---- Chlorides ---- Ammonia

. . . .

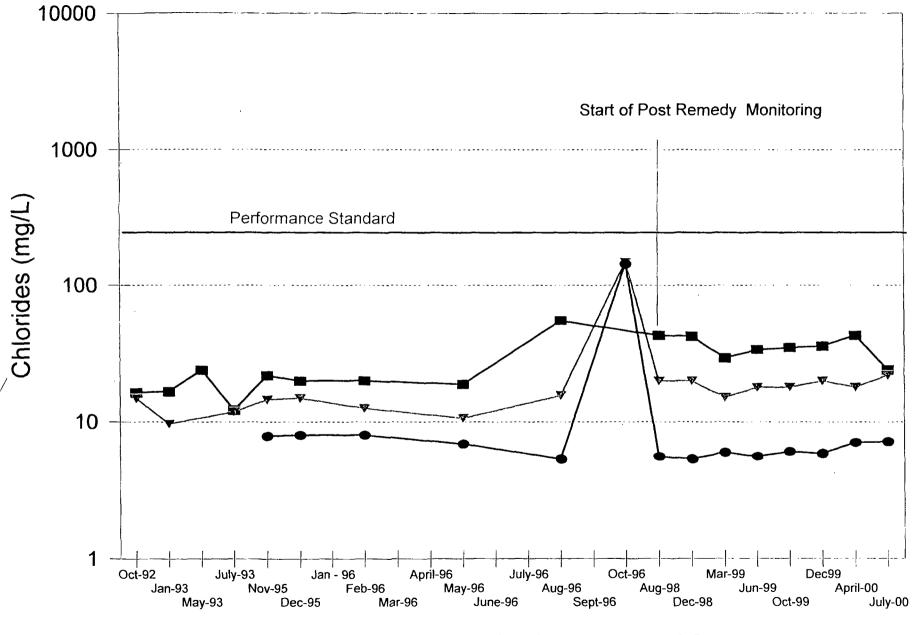
landfill. Due to the absence of site-related impacts in the spring, additional monitoring is not planned during the O&M.

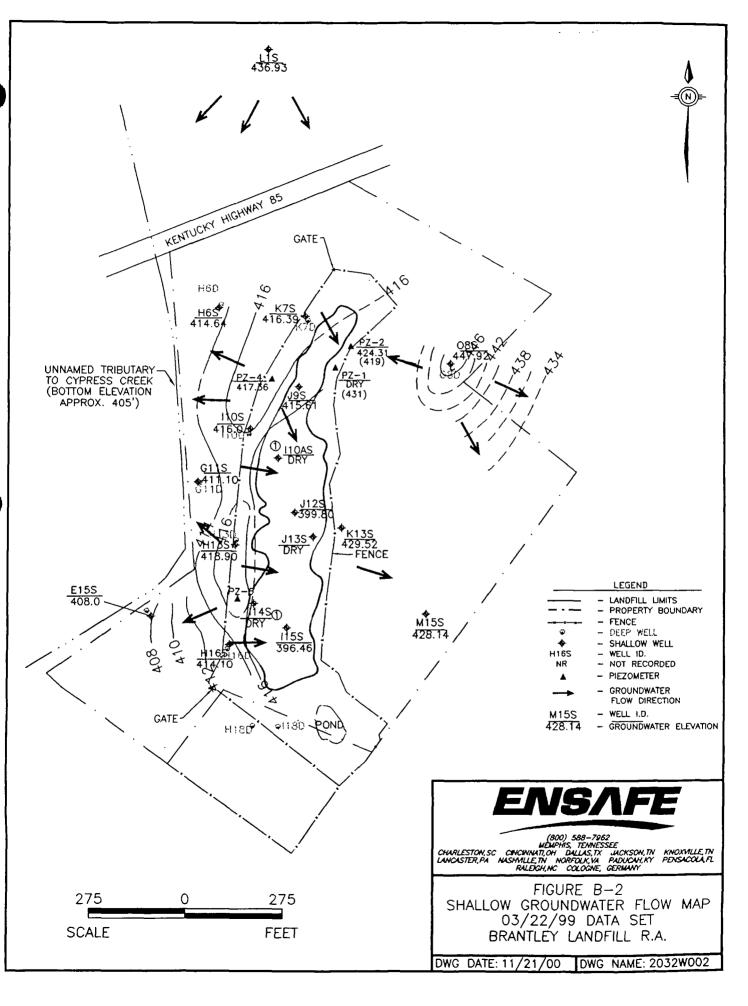
UPS Groundwater

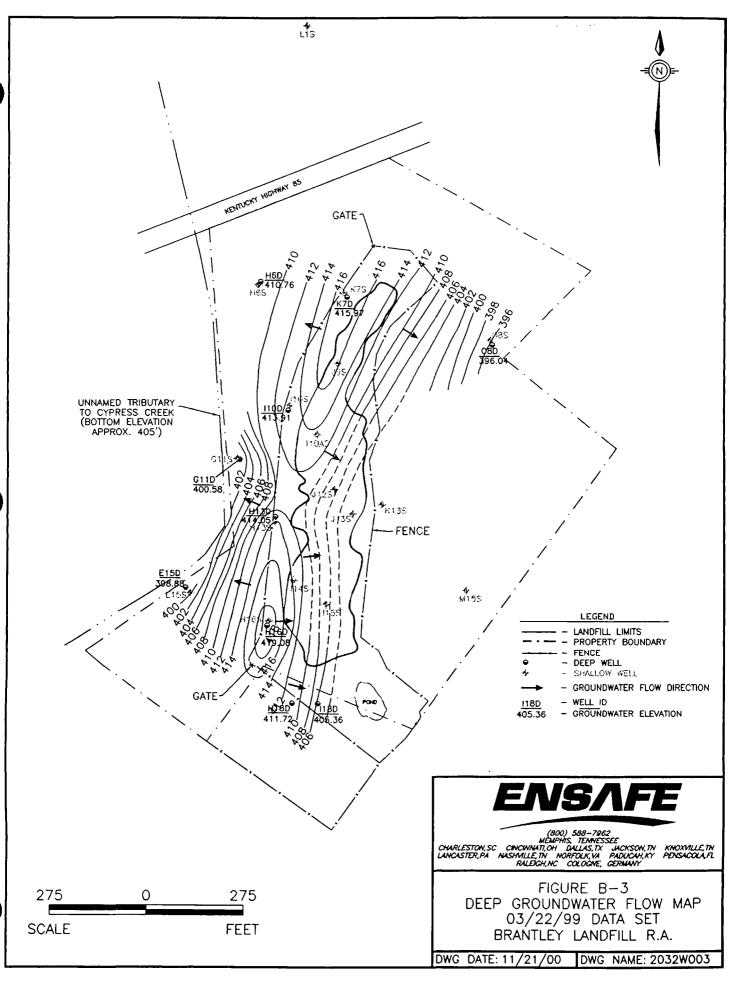
Groundwater quality in the UPS east of the landfill remains free from salt cake fine impacts as shown in Table B-3, except for a single detection of sodium during the first quarter of post-remedy monitoring. The sodium exceedances do not appear to be site-related based on the lack of exceedances in the remaining seven sampling events and the fact that other indicator parameters have remained below cleanup levels. As shown in Graph 5, site-related constituents have not historically been present in the UPS groundwater, which has been classified as Class II groundwater, a potential source of drinking water. Due to the absence of site-related impacts in the UPS groundwater, additional monitoring is not planned during O&M.

Potentiometric Data

Potentiometric maps from the third quarter of post-remedy monitoring (March 1999) are provided for the shallow and deep groundwater in Figures B-2 and B-3. Flow directions since the remedy are basically similar to those measured before the remedy, showing shallow and deep groundwater divides running along the west side of the landfill, while groundwater in the UPS continues to flow south-southeast with dip.


B.3 Air Monitoring


OP-FTIR monitoring was conducted to determine whether the ammonia emissions from the landfill were effectively mitigated by the new cap. During the initial air pathway investigation in 1992, ammonia emissions from the site ranged from 46.36 micrograms per cubic meter ($\mu g/m^3$) to 215.10 $\mu g/m^3$, a range below the earlier repealed Kentucky standard and the USEPA Region IV standard for evaluating chronic and acute ammonia. To verify that the clay cap was properly constructed, Remote Sensing Air, Inc. and Met Associates, Inc. conducted OP-FTIR monitoring



Graph 5

Chlorides in UPS Groundwater

. . .

from June 11 to 13, 2000. The results confirm that ammonia emissions continue to be effectively mitigated. The 8-hour and 24-hour results were an order of magnitude below the acceptable concentrations and well below the values measured during the earlier 1992 monitoring, indicating that the standards are being met. OP-FTIR testing results are provided in the *Air Monitoring Technical Memorandum* (EnSafe, 2000) in Appendix D.

L:\BRANTLEY\Remedial Action Report\Appendix B.wpd

Appendix D Air Monitoring Technical Memorandum

.

. .

.

AIR MONITORING TECHNICAL MEMORANDUM

BRANTLEY LANDFILL SITE ISLAND, KENTUCKY

EnSafe Project Number 2032-004

Prepared for:

COMMONWEALTH ALUMINUM

Alaminam Mannfacturing I, saulesship

Barmet Aluminum — Division of Commonwealth Aluminum 1372 State Road 1957 Lewisport, KY 42351

Prepared by:

Environmental and Safety Designs, Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134 (901) 372-7962

August 5, 2000

Air Monitoring Technical Memorandum Brantley Landfill Site August 2, 2000

1.0 INTRODUCTION

In accordance with the Brantley Landfill Record of Decision, Open Path Fourier Transform Infra-Red (OP-FTIR) monitoring was conducted post-cap to determine whether the ammonia emissions from the landfill have been effectively mitigated or eliminated by the new cap. During the initial air pathway investigation (1992) at the site, emissions from the site were regulated under KAR 63:022. This regulation has since been repealed. The remaining standards for determining site compliance are the 24-hour and annual standards established by USEPA Region IV for evaluating chronic and acute NH₃ exposure. The standards are listed in Table 1 below.

Source	Concentration	Averaging Time
KAR 63:022	0.43 mg/m ³	8-hr
USEPA Region IV (ACGIH)	0.4 mg/m ³	24-hr
USEPA Region IV (IRIS)	0.1 mg/m ³	Annual

2.0 SITE BACKGROUND

The original OP-FTIR monitoring was conducted in June 1992, and the *Final Draft Air Pathway Analysis* was submitted in November of 1993. During that investigation, the ammonia concentrations ranged from 46.36 ug/m³ to 215.10 ug/m³, which are below the action levels presented above. The Record of Decision required the confirmation OP-FTIR sampling to verify that the clay cap that was placed over the landfill was properly constructed. This sampling was performed June 11^{th} - 13^{th} as described below. The results confirm that ammonia emissions continue to be effectively mitigated.

3.0 MONITORING

The monitoring was not completed immediately after the new cap was in place for the following reasons: the first year (1998), was too late in the season (September) to compare the results to the

previous monitoring event (conducted in June after a rainy spring), monitoring was not completed during the second year after the cap was installed because the Western Kentucky area was under extreme drought conditions which would not be representative of the previous monitoring event.

The monitoring was conducted June 11-13, 2000. The attached report (Attachment A), prepared by Remote Sensing Air, Inc. and Met Associates, Inc. details the monitoring event and site conditions during the event. Weather conditions during the monitoring were consistent with our predicted worst case situation of warm temperatures, high humidity, and a good southerly wind flow. The meteorological data are also included in the attached report.

4.0 RESULTS

The results of the monitoring demonstrate that the ammonia concentrations from the landfill are well below the concentrations listed in Table 1. The maximum 8-hour and 24-hour concentration observed during the monitoring period were 49.19 ug/m³ (0.04919 mg/m³) and 33.23 ug/m³ (0.03323 mg/m³) respectively. Since the 8-hour and 24-hour results are an order of magnitude below the acceptable concentrations and are well below the values measured during the first monitoring event, it is apparent that the annual standard will also be met.

5.0 CONCLUSIONS

The results of the OP-FTIR monitoring demonstrate that the ammonia emissions from the landfill to the ambient air have been effectively mitigated by the new cap. The data obtained during this monitoring event, which are 50-60% lower than the values collected in 1992, clearly demonstrates that downwind emissions measured onsite are an order of magnitude below any applicable threshold. As a result, no additional air monitoring is proposed at the Brantley Landfill Site.

ATTACHMENT A

FINAL REPORT

DETERMINATION OF AMMONIA CONCENTRATIONS USING OPEN PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY AT THE BRANTLEY LANDFILL JUNE 11-13, 2000

Report

Project #R130 Report #FR-0001.1

DETERMINATION OF AMMONIA CONCENTRATIONS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY AT THE BRANTLEY LANDFILL JUNE 11 – 13, 2000

FINAL REPORT

June 30, 2000

Prepared by:

Judith O. Zwicker Timothy Waldron

Remote Sensing≡Air, Inc. Met Associates, Inc.

Prepared for: Ensafe Inc. 5724 Summer Trees Drive Memphis, TN 38134

Final Report on OP-FTIR Monitoring

BACKGROUND

Remote Sensing Air, Inc. (RS \equiv A) was contracted by Ensafe Inc. to provide monitoring for ammonia concentrations near the downwind fence line at the Brantley Landfill in Island, Kentucky using open-path Fourier Transform Infrared spectroscopy (OP-FTIR). The landfill contains salt cake fines (SCF) from Barmet's Livia facility, which is no longer in operation. Ammonia is produced by interaction of the (SCF) with water. Monitoring was required by the Record of Decision on the property to verify that the cap has mitigated the release of ammonia. In order to verify meteorological conditions during the monitoring and to verify that the emissions from the landfill would cross the beam path, meteorological monitoring was conducted simultaneously with the OP-FTIR monitoring.

MONITORING

Monitoring was performed from early evening on June 11 through the morning of June 13, 2000 to provide more than 24-hours of data for review. The forecast for the period was for winds from the south to southwest, high temperatures (greater than 80° F) and high dew points (greater than 60° F) with the possibility of thunder showers. The weather was as predicted except that there were no thunder showers. The area had been saturated with heavy rains during the previous month.

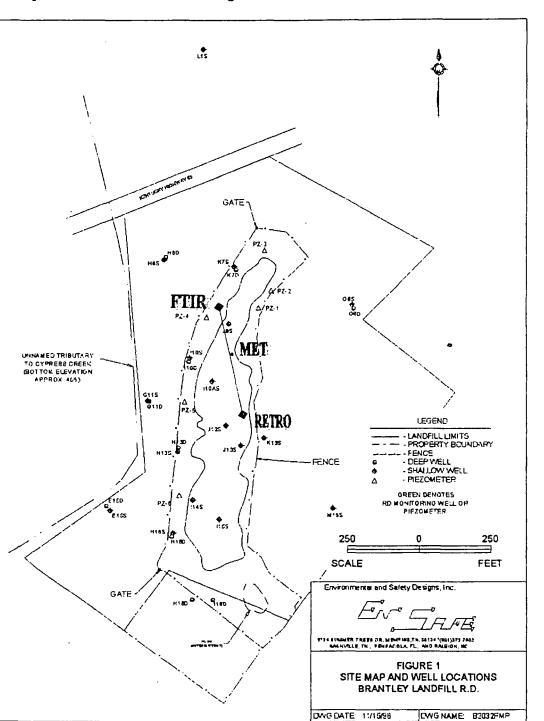
The site is shown in Figure 1. The landfill is about 100 meters wide and 300 meters long. It is situated approximately north-south with a waste water treatment plant and holding pond at the south end. There are trees to the east and west and a field to the west of the trees. The landfill is capped and rises to about 10 feet (3 meters) above its lowest points. Given the configuration of the landfill and the predicted wind directions, the optimum beam path was along the northeastern edge of the landfill. The beam path chosen is shown in Figure 1. This beam path would provide the maximum average fence line concentrations since there would be impact from the entire landfill as well as possible impact from the holding pond and waste water treatment plant. The meteorological equipment was set up at approximately mid-beam path and about the same height as the beam to provide accurate information on transport through the beam with the predicted southerly winds.

With the southerly to southwesterly winds and the trees to east and west, there was good transport from the south during the daytime monitoring. The nighttime monitoring had calm and variable winds.

OP-FTIR Set-up and Operation

The OP-FTIR system used for this monitoring was an MDA monostatic system with the source, interferometer, and detector in the same instrument box. With this type of system, the beam is modulated before being transmitted from the box through a telescope to the retroreflector to reduce the impact of infrared radiation from other sources. The beam is then returned by the retroreflector to the telescope and to the detector. A single beam path was set up as shown in Figure 1 with a path-length of 115 meters from the telescope to the retroreflector. The beam height was set at approximately 3 meters to provide monitoring near the breathing zone and to be above the high ground between the OP-FTIR and the retroreflector.

1


Final Report on OP-FTIR Monitoring

Page 2 of 12

The OP-FTIR system was operated with 1 cm⁻¹ spectral resolution and used a Stirling engine to cool the MCT detector. Spectra were collected at approximately 1-minute intervals with each saved spectrum providing the average of 16 coadded spectra. Spectra were collected continuously from

FTIR to RETO.

Figure 1. Site map with location of meteorological equipment (MET) as well as beam from

6/30/00

Final Report on OP-FTIR Monitoring

19:00 CST on June 11, 2000 through 08:00 CST on June 13, 2000 except for time off line for downloading data and changing real-time viewing windows.

Meteorological Equipment and Set-up

Meteorological monitoring was performed simultaneously with the OP-FTIR monitoring in order to provide information for proper locations of beams and evaluation of the OP-FTIR data relative to the possible landfill emissions as well as possible impact from holding pond, waste water treatment plant and spraying of an adjacent field.

Meteorological monitoring was provided by MetAssociates (MetA). MetA provided two portable towers set up with equipment at about 3 meters above ground to be at approximately the same height as the OP-FTIR beam. The meteorological equipment was set up about 8 feet from the OP-FTIR beam near the center point of the beam (see Figure 1).

The towers were equipped with sensors for measurement of temperature, pressure, relative humidity, wind speed, and wind direction. A Campbell CR-10 datalogger was used to collect the meteorological data by sampling the sensors at one-second intervals and providing one-minute and five-minute average values as well as standard deviations of all parameters. Data were provided in real-time plots and tables on the field computer provided for the project.

VARIABLE	INSTRUMENT TYPE	MANUFACTURER AND MODEL	SYSTEM ACCURACY	SENSOR SPECIFICATIONS
Horizontal Wind Speed	Cup Anemometer	Climatronics 100108-1	±0.25 mph ±1%	Starting threshold <1 mph (maintained at 0.5 mph) distance constant <15 ft
Wind Direction	Vane	Climatronics 100108-2	±3 deg linearity ±2 deg orientation	
RH	Strain Gauge	Climatronics 100098	±2% linearity. ±2% hysteresis ±1% reproducibility	Time constant = 3
Temperature	Thermistor	Climatronics 200093-1	±0.27 °F	Time constant = 10
Pressure	Piezo Resistance	Climatronics 101448	±0.04 "Hg	
Datalogger	Digital Intelligent	Campbell Scientific CR-10		

Table 1. Specifications for the Meteorological System

D:\BrantleyRSAReport.doc

6/30/00 4

4

DATA ANALYSIS

Both the OP-FTIR and meteorological data were plotted and reviewed for erroneous data points. Detailed plots of the meteorological data are provided in Appendix A. The OP-FTIR data were then evaluated for maximum 24-hour, 8-hour, 1-hour, and 1-minute path-average ammonia concentrations in ug/m^3 .

OP-FTIR Data

Spectra were collected and saved as single beam spectra to allow for easier post-processing if needed. All spectra were transformed from single-beam to absorbance spectra in real-time using the zero-path background spectrum collected on June 11, 2000. The zero-path spectrum provides the absorbance features of the instrument box and internal optics without ambient interferents. Spectra were analyzed using the Continuous Monitor (CM) Software developed by MDA and updated by ETG.

The CM software determines path-integrated concentrations from the absorbance spectra using a Classical Least Squares algorithm and standard reference spectra for each compound to be determined as well a those which might provide interference with the compounds of interest. The CM software version used provides the path-integrated concentrations in parts per million-meter (ppm-m) over the full beam-path. The CM software also provides a minimum detectable limit (MDL) for each spectrum based on three times the residual of the CLS calculations. The MDL is very useful for tracking interferences, low signal, and other possible problems.

The real-time path-integrated values were converted to path-average concentrations – the average concentration over the path – by dividing by the path length in meters. The path-average concentrations of ammonia are reported in ug/m³ for easier comparison with the standards. Path-average concentrations for the nitrous oxide (used for ambient quality assurance) is reported in parts per billion (ppb) to be consistent with comparison to the ambient standard value of 360 ppb. The value of 360 ppb was determined by plotting the data reported in Trends '93 and extrapolating to June 2000.

All data reported are those collected in real-time, no post-processing was required. Figure 2 provides time series plots of the ammonia data during the full monitoring period overlaid with wind direction (a), wind speed (b), and temperature (c). The OP-FTIR data include a correction for the ammonia produced in the sealed instrument box during operation. The growth has been shown in studies at the RS=A office to be about 0.002 ppm-m/minute or 3.61 ppm-m/day. This is consistent with the data collected using the zero path spectra collected at the beginning and end of this monitoring program. Corrections were made for each 1-minute data point. Also, the spectra collected on June 12, 2000 at 13:35, 14:10, and 14:11 CST were determined to have insufficient signal to provide accurate concentration data (see discussion under Quality Assurance). These data points have been removed from the dataset before averaging and plotting.

5

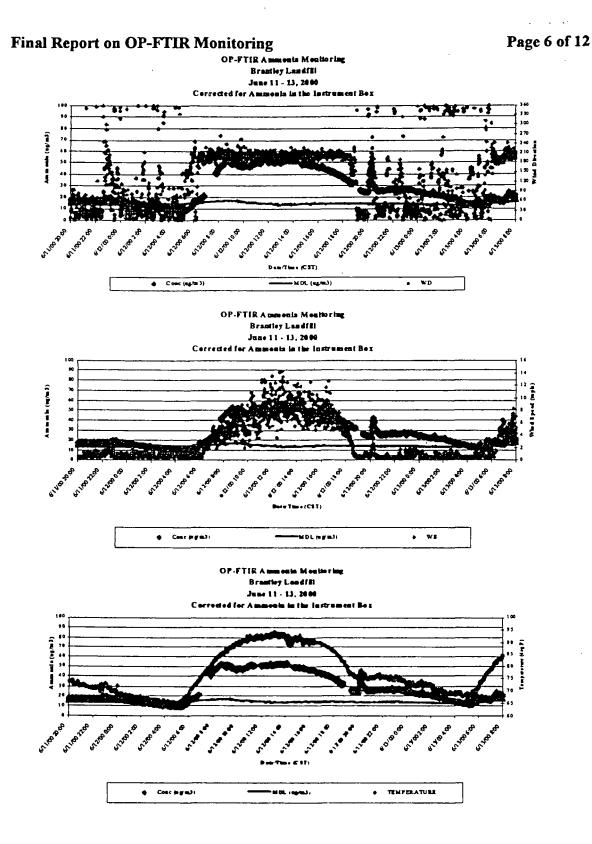


Figure 2. Ammonia concentrations plotted with simultaneously collected a) wind direction, b) wind speed, and c) temperature data.

D:\BrantleyRSAReport.doc

6/30/00 6

Running 24-hour, 8-hour, 1-hour, and 1-minute averages were calculated for the path-averaged ammonia concentrations. The maximum values are provided in Table 2.

Table 2. Summary of maximum rolling average path-average concentrations of ammonia determined at the Brantley Landfill, June 11-13, 2000.

······································	Ammonia
Maximum 24-hour average	33.23 ug/m ³
Maximum 8-hour average	49.19 ug/m ³
Maximum 1-hour average	52.33 ug/m ³
Maximum 1-minute average	54.16 ug/m ³

The meteorological conditions during the maximum 24-hour average $(6/12/00\ 06.17$ through $6/13/00\ 06.35\ CST$) cover the full range of temperatures, relative humidity, wind speeds, and wind directions encountered during the monitoring.

The meteorological conditions during the maximum 8-hour average $(6/12/00\ 07.56$ through $6/12/00\ 15.56$ CST) cover mainly the highest temperatures, the lowest relative humidity, the highest wind speeds, and wind directions mainly from the south through southwest.

The meteorological conditions during the maximum 1-hour average $(6/12/00\ 13:15$ through $6/12/00\ 14:15\ CST$) cover the highest temperatures, the lowest relative humidity, the highest wind speeds, and wind directions mainly from the south through southwest.

Meteorological Data

Following the field measurement portion of the study, all of the meteorological data were checked for quality control, processed, summarized, and displayed in time series graphics for the sampling period of the field program (Appendix A). Final review of the data resulted in the following changes being made to the raw field measurement data.

- 1. Barometric Pressure: Invalidated BP and StDev of BP from 1856-1904 CST on 6/11/00
- 2. Relative Humidity: Set values to 100.0 from 0448-0536 on 6/12/00 (from 100.1 100.3)
- 3. Unit Vector WD: Reset 1 value from 0.001 to 360.0 to avoid spreadsheet display of 0.00

QUALITY ASSURANCE

The quality of the OP-FTIR data were assured by following quality assurance procedures based on the USEPA Method TO-16 as described below. The quality of the meteorological data was assured by pre-monitoring calibration of the equipment, following USEPA standards for calibration and setup, and review of standard deviations of all parameters. The full calibration report for the meteorological monitoring is found in Appendix B.

D:\BrantleyRSAReport.doc

6/30/00

7

OP-FTIR Data

A total of 1800 1-minute average spectra were collected over the monitoring period. Three of these were removed due to low signal as discussed below.

Detection Limits

MDLs are calculated automatically by the CM software as three times the residual of the CLS analysis and are very useful for tracking problems with beam signal, presence of interfering compounds, and other problems. The average detection limit for the monitoring period is 14.02 ug/m³. This detection limit is sufficient for the present monitoring requirements since it is significantly below the criteria for comparison.

There were three spectra with high MDLs and unusual concentrations. All three also had high MDLs for the ambient N_2O monitoring. On reviewing the single beam spectra for these points, it was obvious that there was insufficient signal. There is no certain reason for these three spectra, all on June 12, 2000 (13:35; 14:10, and 14:11 CST), to have low signal. Generally such low signals are due to beam blockage. There did not seem to be any objects in the area which could have caused such blockage. There is a possibility of an electrical drain on the source during this period due to soldering being performed using the same power line.

Accuracy and Precision

The accuracy and precision of the data reported for the specific compounds of interest and analysis routine used were determined by the use of NIST certified gas mixtures flowed through the internal QA cell of the instrument. The internal QA cell has a path length of 15 cm (0.15 m) with the beam passing only once through the QA cell. The NIST certified gas mixture consisted of a mixture of ammonia in dry nitrogen at 170 ppm.

The accuracy is determined as the difference between the average path-average concentration during the flow of QA gas corrected for the average background before and after the flow minus the certified concentration divided by the certified concentration from the standard gas mixture: [(((Cm-Cb)-Ck)/Ck)*100% where Cm is the average measured value, Cb is the background value determined as the average of the values before and after the flow of QA gas, and Ck is the known (certified) value]. The ammonia QA check was performed using a zero path at the RS=A office on June 8, 2000 before shipment of the equipment, at the beginning of the monitoring on June 11, 2000, and at the end of the monitoring on June 13, 2000. An open-path test was performed at the end of the monitoring on June 13, 2000. The results of these tests are reported in Table 3 and the data plotted in Figure 3.

The precision relative to the specific compounds is determined as the relative standard deviation [(Std. Dev./Average)*100%] of the values determined during the QA cell tests. The precision results are also reported in Table 3.

The overall accuracy of the system and analysis routine was determined using the ambient gas nitrous oxide which has a consistent ambient value of about 360 ppb world wide. The results for all valid data (sufficient signal) are provided in Figure 4. These data validate the system as well as the determination of path-length. The certified value for N_2O were obtained from the Trends '93 volume providing ambient concentrations of these gases at various points in the world. The

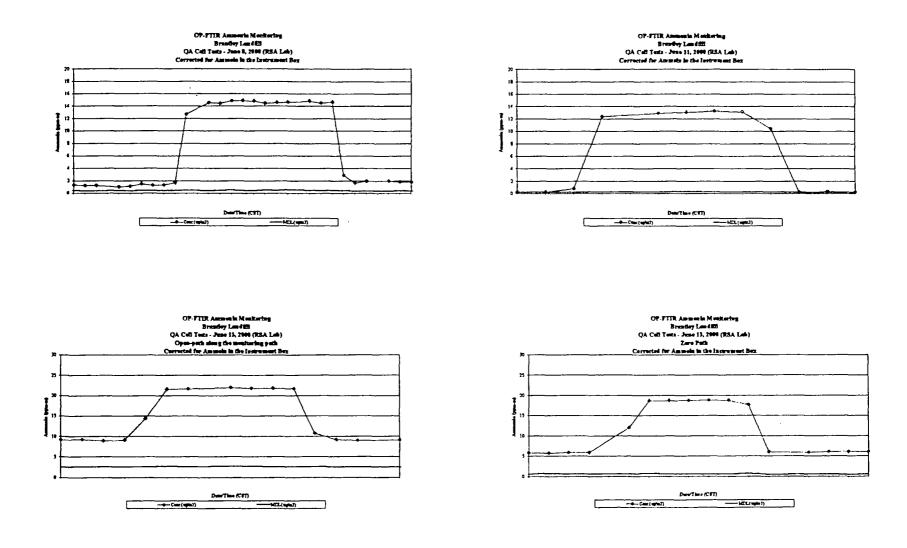
D:\BrantleyRSAReport.doc

Page 9 of 12

ambient gas results can only be obtained using the full open-path spectra and a zero-path background. The average path-average concentration for N_2O over the full monitoring period was 347 ppb with a standard deviation of 3.11 ppb. Thus, the accuracy over the monitoring period is -4.52% and the precision is 2.17% over 1797 spectra.

Table 3. Results of QA cell tests.

Date		NH ₃ (ppm)
Certified		170
6/8/2000	Concentration	171
Zero Path	Accuracy	0.8%
RS≡A Lab	Precision	1.2%
6/11/2000	Concentration	169
Zero Path	Accuracy	-0.3%
Brantley	Precision	2.7%
6/13/2000	Concentration	169
Open Path	Accuracy	-0.7%
Brantley	Precision	0.5%
6/13/2000	Concentration	170
Zero Path	Accuracy	0.5%
Brantley	Precision	0.4%


Accuracy = [(Cm-Ck)/Ck]*100%

Precision = [Standard Deviation of Cm/Average of Cm]*100% Where Cm = measured value

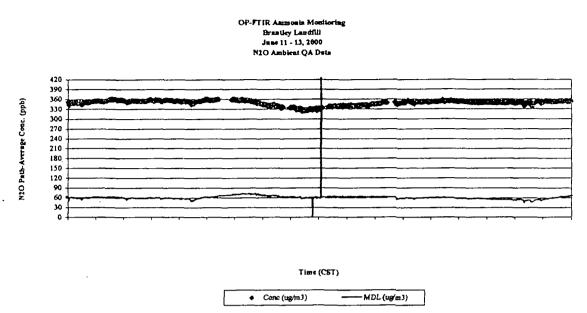
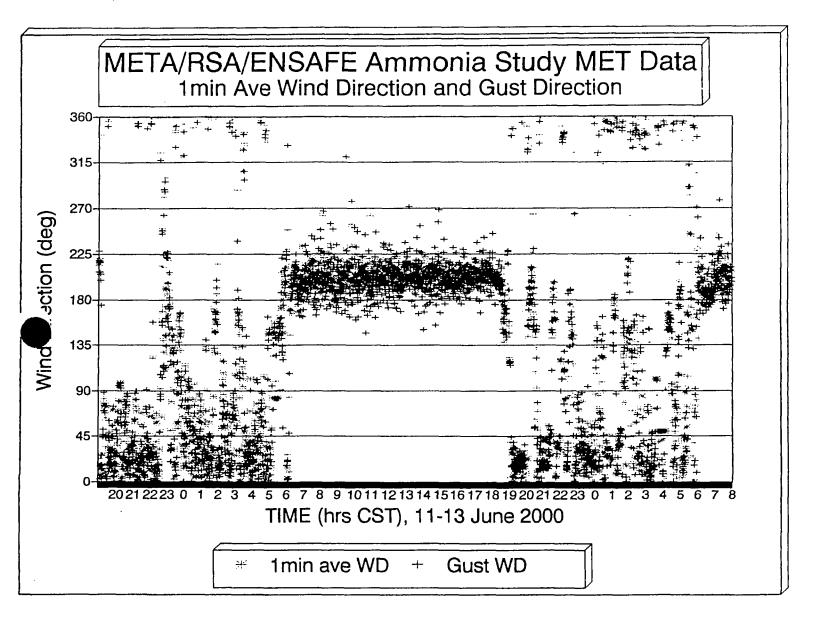
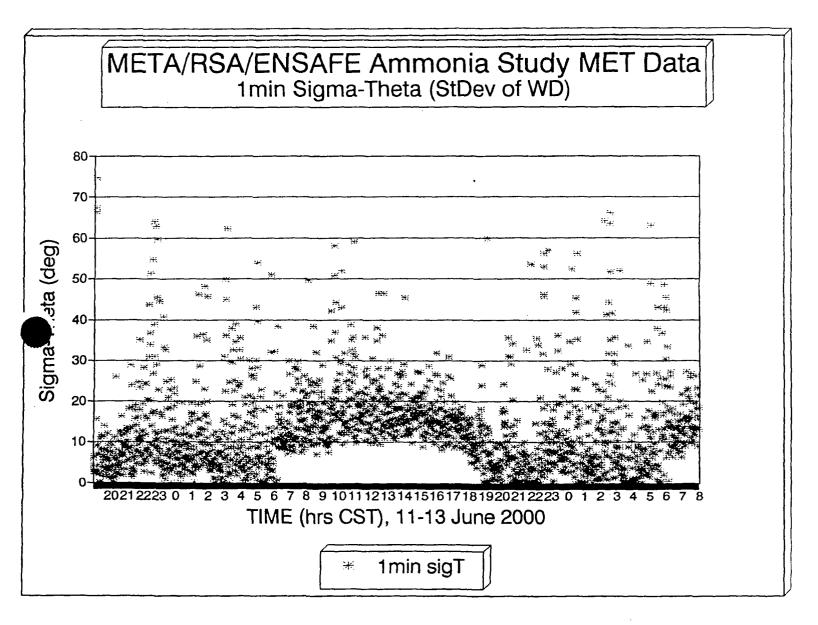
Ck = known (NIST certified) value

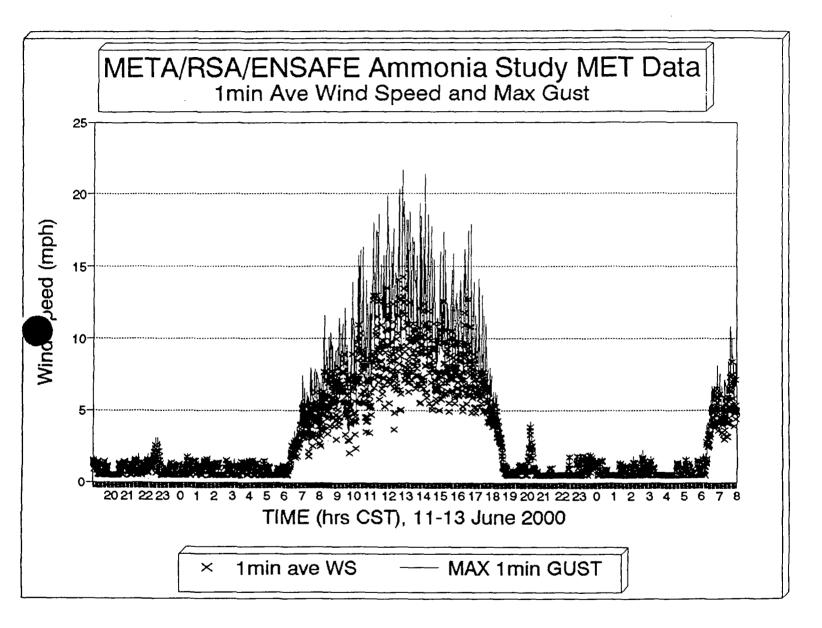
Page 10 of 12

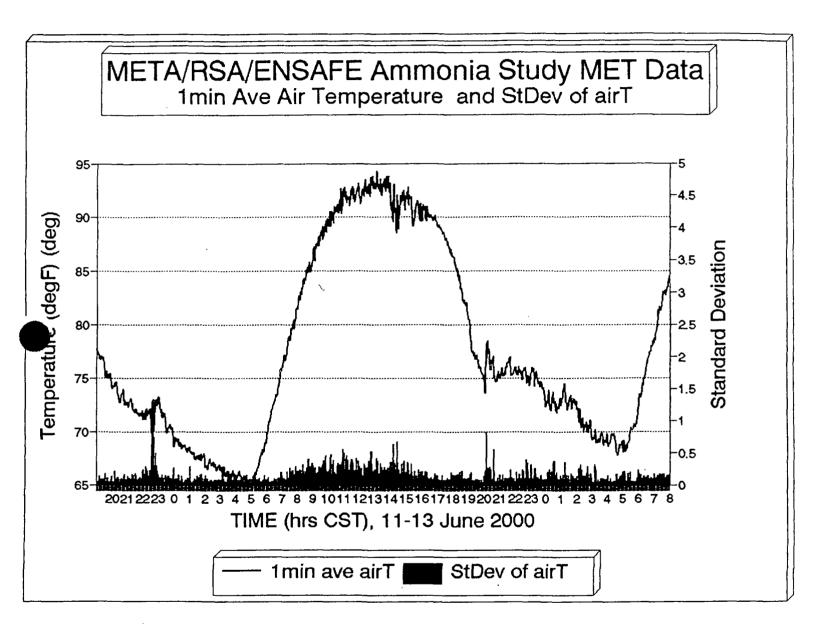
Figure 3. QA cell tests: prefield zero path, premonitoring zero path, end monitoring open path, and end monitoring zero path.

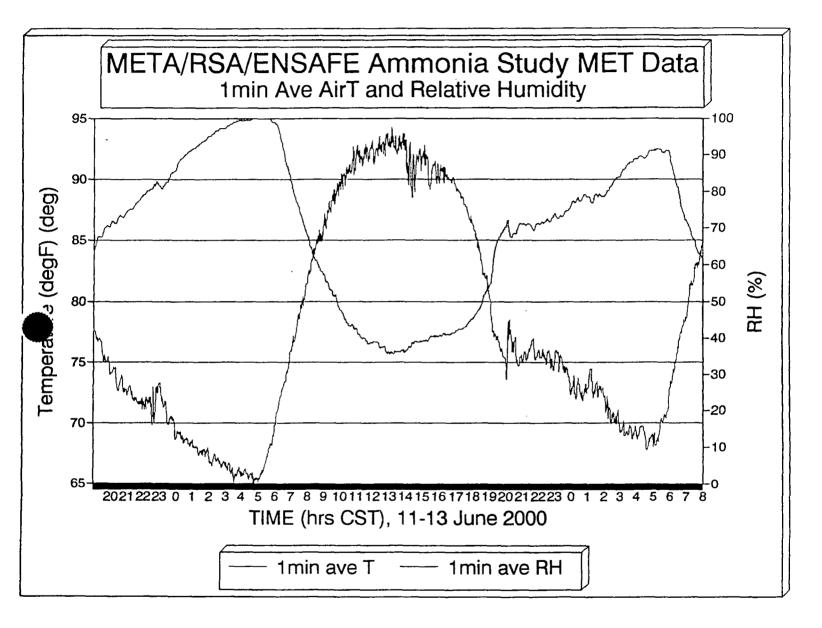
D:\BrantleyRSAReport.doc

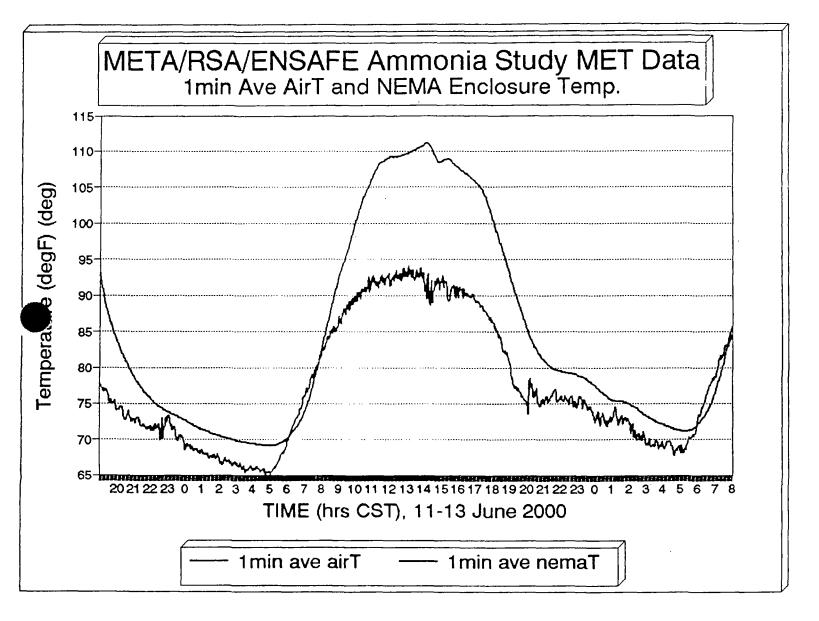
10

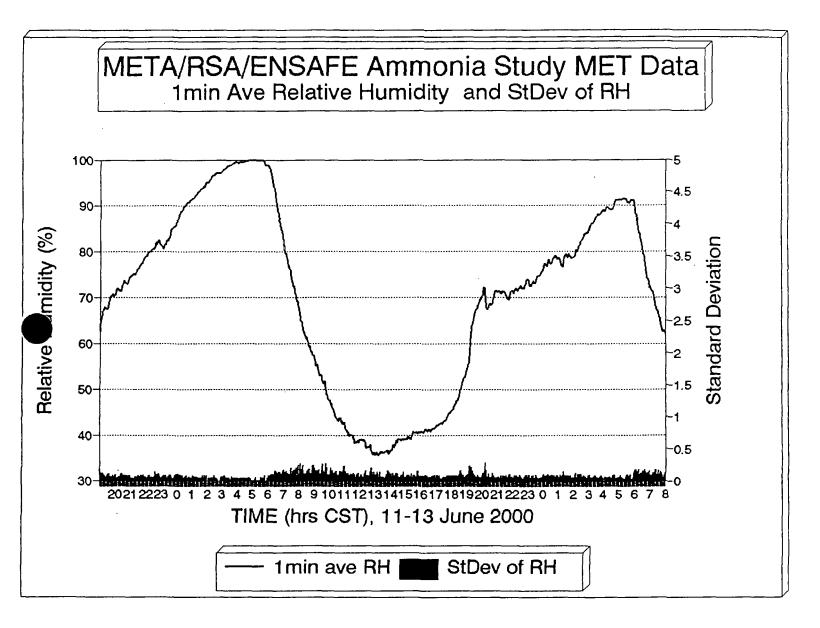




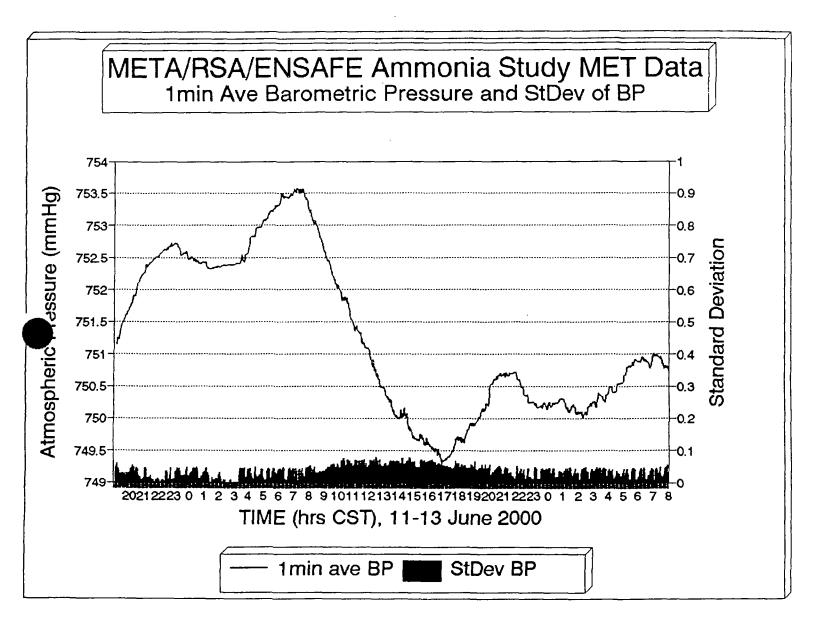

Figure 4. Ambient QA data using N₂O showing that the instrument was operating properly over the study period.

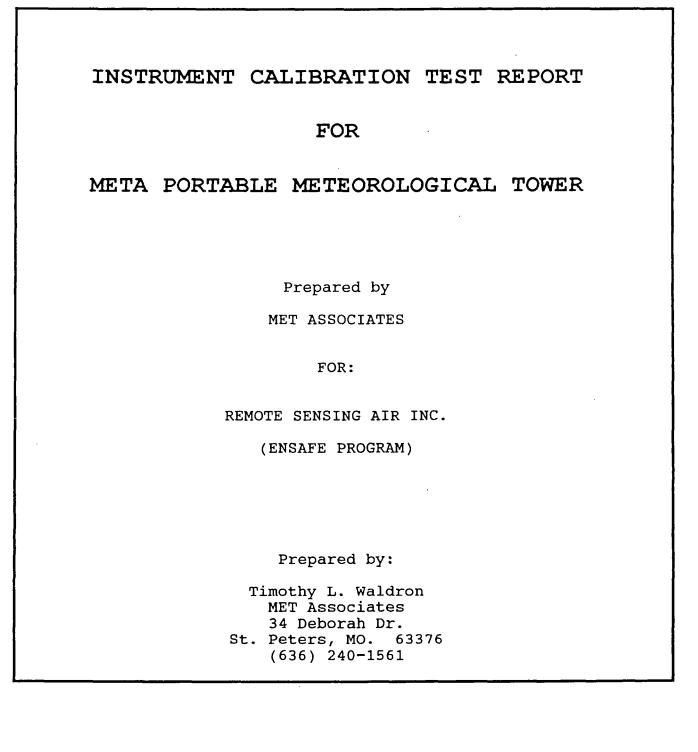

APPENDIX A


DETAILED METEOROLOGICAL DATA PLOTS









APPENDIX B

CALIBRATION REPORT FOR METEOROLOGICAL EQUIPMENT

1.0 TEST PROCEDURES

The audit/calibration work tasks and procedures are designed to meet and satisfy the operational and documentation requirements of DOE and EPA. All audit procedures are in accordance with the requirements described in <u>Quality</u> <u>Assurance Handbook for Air Pollution Measurement Systems, Vol.</u> <u>IV: Meteorological Measurements,</u> (EPA-600/4-82-060, August 1989).

The QA objectives for the ENSAFE meteorological measurements are assumed from the EPA recommendations contained in <u>On-Site Meteorological Program Guidance for Regulatory</u> <u>Modeling Applications</u>, EPA-450/4-87-013, June 1987. These objectives are reproduced as figure 1.

Complete calibration testing is performed after the system has been fully assembled at the META warehouse (bench testing) and then most tests are repeated after deployment for the project (field testing). Both sets of tests are performed with the same instruments, cables, dataloggers, software, and modems. A brief report is issued containing all primary results.

Equipment used during META audit and calibration programs include the following:

Lietz high precision siting compass David White Level Transit Certified variable-speed Synchronous Motor NIST certified thermometers Constant temperature water baths R.M. Young 18310 Torque Disk R.M. Young 18330 Torque Gauge Qualimetrics 60103 Precipitation Calibrator Digital Volt Meter (DVM) Climatronics Linearity test fixture Additional equipment as deemed necessary Two-Channel portable radios Camera for site documentation Certified power aspirated psychrometer Hygrometrix standard humidity calibration cells Calibrated digital barometer

1.1 Establishment of True North Reference

True North is determined by META using the Solar Noon tower True projection technique at the site when possible. shadow Solar Noon is calculated to the nearest second using astronomical tables. A colored marker stake is standard established for the tower North/South projection line. The field value of magnetic declination is also determined and compared to that value determined, via modem, from the USGS Branch of Global Seismology and Geomagnetism to identify any

FIGURE 1 (from EPA)

Recommended System Accuracy and Resolutions

•

Meteorological <u>Variable</u>	System <u>Accuracy</u>	Measurement <u>Resolution</u>
Wind Speed (horizontal & vertical)	±(0.2 m/s + 5% of observed)	0.1 m/s
Wind Direction (azimuth & elevation)	± 5 degrees	1 degree
Ambient Temperature	± 0.5°C	0.1°C
Vertical Temperature Difference	e. ± 0.1°C	0.02°C
Dew Point Temperature	± 1.5°C	0.1°C
Precipitation	± 10% of observed	0.3 mm
Pressure	± 3 mb (0.3 kPa)	0.5 mb
Radiation	± 5% of observed	10 W/m^2
Time	± 5 minutes	

local effects on magnetic north. The True North marker is also used to establish a True East/West Reference marker for the site, which identifies the datum line for transit placement for aligning the anemometer cross-arm assembly.

1.2 Performance Audit Procedures

The tower performance audit consists of instrument tests, data reviews, and assessment of the instrument operating environments. It is important that all audit test data be acquired through the data acquisition system (DAS) rather than an alternate or duplicate system.

Upon arrival at established site locations, each variable is observed for reasonableness in the real-time and the latest average values. Next the appropriate audit manipulations are performed on each sensor as described in the following sections, and the CR10/computer outputs are recorded and compared to the audit input values. If the EPA audit criteria limits are exceeded, troubleshooting is conducted to determine the cause of the discrepancy and the sensor is repaired if possible. All sensors so serviced are then reaudited. At the conclusion of the site audit, all instrument values are again checked for reasonableness.

The following sections briefly describe some of the instrument audit checks which are performed.

1.2.1 Check of Sensor Heights

During the site audit, each instrument exposure height above ground will be measured with a standard tape measure whenever possible. These values are compared to those stated in the QA Plan and/or Monitoring Plan where applicable.

1.2.2 WIND DIRECTION

1.2.2.1 Vane Orientation

Accurate alignment of the wind sensor is critical to any meteorological field measurements. The ENSAFE met tower, by virtue of being a portable tripod model, allowed more direct documentation of wind vane orientation than tilt-down towers. The vane orientation was determined (after completion of the tasks for determination of the reference marker as described above) by measuring and recording (via a transit) the cross-arm assembly orientation angle before any adjustments are made on the tripod. Any orientation error is recorded. A complete set of linearity tests (described in the next section) were performed on the sensor with error values determined for each 30 degrees of compass. The additive effect of these two error values (orientation and linearity) will provide the ENSAFE "as found" value for wind direction total error. Tolerances are 2° for vane orientation and 3° for mechanical linearity, for a total tolerance of 5° for directional error, in accordance with EPA specifications.

1.2.2.2 Sensor Linearity

The wind sensor's ability to accurately measure winds from any direction is tested by mounting a Climatronics vane angle calibration fixture on the vane shaft. The unit provides accurate positioning of the vane shaft for each 30° of the azimuthal circle. The vane is positioned at each 30° increment and the directional values are read from the CR10/computer display. The tests are performed in both clockwise and counterclockwise rotation of the calibration fixture to compensate for any mechanical play in the test fixture. Expected values are recorded and compared to those indicated from the data logger. The sensor linearity is considered satisfactory if each of the differences is less than 3°.

1.2.2.3 Starting Threshold Torque

The wind vane's starting threshold torque is measured using an R.M. Young model 18330 torque gauge. The gauge is applied at a point on the vane shaft 10 cm from the center of rotation and a constant force is applied. The test is repeated 6-8 times, beginning at different points of azimuth, and different directions of rotation. The audit result is considered satisfactory if the maximum measured threshold starting torque is 20 gram-centimeters (META goal of 10 gm cm) or less.

1.2.3 HORIZONTAL WIND SPEED

1.2.3.1 Sensor Calibration

The sensor is audited by removing the propeller and applying a constant rate of rotation in a clockwise direction to the anemometer shaft using the synchronous motors. This is done by connecting the motor shaft to the anemometer shaft using a non-rigid, no-slip connector. Using the anemometer specifications, rpm is converted to wind speed output values over one or two minutes. The tests are completed at 0, 300, 600, and 1000 rpm, which results in a four point calibration check. The audit results are considered satisfactory if the results are within 0.45 mph +5% of the audit value.

1.2.3.2 Starting Threshold Torque

The anemometer shaft starting threshold torque is measured using an R.M. Young Model 18310 Torque Disc. The torque disk fits directly on the anemometer shaft. The force is applied by weights attached to the disc at the precise distance from the center of rotation. The test is done by placing the anemometer in a horizontal position, turning the disc so that the weight is on a 9 o'clock or 3 o'clock position, and releasing the disc. The audit result is considered satisfactory if the disc moves freely and turns the weight to the 6 o'clock position (recorded as a 90° response). The disc is normally calibrated to provide a torque of 0.6 gram-centimeters (gm-cm). The test is repeated at 90° intervals.

1.2.4 TEMPERATURE

The temperature sensor is audited by co-location at three points with an NIST (NBS) traceable thermometer in constant temperature water baths. The tests are conducted in the following approximate temperature ranges: 32-33°F, 65-75°F, and near 90°F. The equilibrated thermometer reading is corrected to true temperature and is compared to the data logger/computer output. The audit results are considered satisfactory if the difference between the two is ± 0.9 °F or less at all three points tested. In addition, the aspirator motor is checked for proper operation.

1.2.5 RELATIVE HUMIDITY

The relative humidity sensor is checked by co-location with a power aspirated ASSMAN psychrometer with traceable wet and dry bulb thermometers. For low exposures (<3m) on tilt-down towers the co-location test is performed with the tower remaining in the upright position to avoid strong moisture gradients which are frequently encountered nearer the surface. The intakes for the two measurement systems are coincidal and the psychrometer is shielded from solar radiation when appropriate. When the two thermometer readings from the psychrometer have stabilized, the readings are noted from them and from the station sensor via the computer display screen. The wet and dry bulb temperatures are then used with standard reduction tables to calculate the relative humidity. The audit is considered satisfactory if the difference between values is less than 5% RH.

An "informal audit" for the high end of the scale is performed on the RH sensor whenever heavy fog is documented at the site. The difference from 100% is carefully tracked.

In addition to the power psychrometer tests, in-situ calibrations, utilizing standard (traceable) saturated salt solutions, may be performed as part of a trouble shooting exercise. This procedure requires that the sensor be carefully introduced into a sealed solution container and allowed to equilibrate with the artificial atmosphere. Because the process may take 1-3 hours per test point, this procedure is usually only used when the power psychrometer tests, or the sensor history, indicate a need for further confirmations.

6

A complete set of standard humidity cells (Hygrometrix, Model HMX-CK, validation kit, 8 standard humidity cells) can be used for the audit.

1.2.6 BAROMETRIC PRESSURE

The barometric pressure sensor usually cannot be tested per se but the data value is checked against local pressure reduced to sea level using atmospheric reduction techniques. The audit result is considered satisfactory if the data logger output is within ± 0.6 mb (2.25 mm Hg) of the audit values. The sensor is may also be checked periodically against a calibrated digital barometer.

1.2.7 DERIVED QUANTITIES

All derived quantities (e.g., sigma theta,) are checked in field as well as reviewed and compared during the data the review. During the audit, sigma-theta calculations are checked using the synchronous motor and vane angle calibration bv fixture simultaneously. The wind direction vane is held in one position for $\frac{1}{2}$ of a measurement period (both 2 minute 15 test periods are used) and quickly locked into and into а different position for the remainder of the period while the wind speed unit remains under constant rotation (600 rpm). Both positional values are recorded and an expected audit value for sigma-theta is calculated for comparison. Both the Yamartino and the Campbell algorithms are checked.

2.0 Test Results

All calibration tests showed acceptable results for all system components. The test results for both pre-deployment (8 June 2000 bench tests) testing and testing at the time of deployment (in the field on 11 June 2000) are shown on the following 4 page attachment and summarized briefly below.

Horizontal Wind Direction: Linearity, starting torque values, and alignment checks were all satisfactory for the wind vane.

Horizontal Wind Speed: Starting torque acceptable with a slight sensor imbalance judged not to affect starting torque values. Rotational test results were excellent for all speeds.

Sigma-Theta: The sigma-theta calculations were verified with the normal slightly higher Yamartino algorithm values and slightly lower Campbell algorithm values.

Temperature: Ambient temperatures were tested in 3 constant

7

temperature water baths with similar satisfactory results for both the pre-deployment and deployment testing. The maximum error observed was 0.25 degF.

Barometric Pressure: Atmospheric pressure testing showed the unit to be within specifications with a scaling error of around 0.33%. Both tests showed similar results indicating that further processing refinement could be undertaken to remove the small, but acceptable, bias in the data.

Relative Humidity: Both test sets indicated accurate RH measurements were being obtained.

In addition, all acquired data were QC'd using statistical and graphical display software. No bias or persistent problems were observed in the data base.

STATION: ENSAFE

CALIBRATION TESTS

MET ASSOCIATES

DATE: 6/8/2000 - Bench Tests DATE: 6/11/2000 - Field Tests Auditor: Tim Waldron

HORIZONTAL WIND DIRECTION

	SERIAL	Number		
	as found as			
Crossarm Assembly	3405	3405		
Wind Vane	1291	1291		
Wind Cups	1157	1157		

SENS	SENSOR HEIGHT					
Stated:	2.00	m				
Measured	2.01	m				
DIFF:	0.01	m				
	1					

ALIGNMENT

STATION ORIENTATION Reference 270.00 deg	
Initial Magnetic Audit Value: 270.00 deg	(QAmax = 2 deg
Declination Adjustment: -1.50 deg	
Initial Corrected (True) Orientation: 268.50 deg	
Initial Error: -1.50 deg PASS	(initial)
Final Magnetic Audit Value: 270.00 deg	
Final Corrected (True) Orientation: 268.50 deg	
Final Error -1.50 deg	(final)

		initial	new	
		unit	unit	
1	CW	4	n/a	
	ccw	4	n/a	
WIND VANE	cw	6	n/a	(QAmax = 20 gmcm)
STARTING TORQUE	CCW	6	n/a	
QAmax = 20 gmcm	cw	4	n/a	
1	ccw	4	n/a	
1	. cw	4	n/a	
1	ccw	4	n/a	
	AVERAGE	4.50	n/a	
1	MAX	6	n/a	
	QA STATUS	PASS	n/a	

Vane TOTAL DATALOGGER VALUES Linearity Orient. ERROR (S/N 3405) ANGLE SET CCW CW AVG. Error 0 0.19 0.24 0.22 0.22 n/a 30 29 10 29.68 29.39 -0.61 n/a INITIAL (Bench) 60 58.83 59.45 59.14 -0.86 n/a WIND VANE 89.42 90 88.79 89.11 -0.89 n/a LINEARITY 120 118.56 119.23 118.90 -1.10 n/a 150 148.29 149.01 148.65 -1.35 n/a QAmax 180 178 06 178.83 178.45 -1.56 n/a 3 deg Linearity 210 208.07 208.79 208.43 -1.57 n/a 5 deg Total 240 238.04 238.76 238.40 -1.60 n/a 270 268.39 **26**9.20 268.80 -1.21 n/a Total = Linearity Error 300 298.97 **299**.69 299.33 -0.67 n/a + Orientation Error 330 329 80 330.38 330.09 0.09 n/a AVERAGE ERROR = -0.93 n/a MAX ERROR = 1.60 n/a QA STATUS = PASS n/a

STATION: ENSAFE

STATION: ENSAFE						payar
					Vane	TOTAL
		DATAL	OGGER VA	LUES	Linearity	Orient.
(S/N 3405)	ANGLE SET	CCW	cw	AVG.	Error	ERROR
	0	0.29	0.43	0.36	0.36	-1.14
	30	29.61	29.85	29.73	-0.27	-1.77
FINAL (FIELD)	60	59.67	59.45	59.56	-0.44	-1.94
WIND VANE	90	89.35	89.35	89.35	-0.65	-2.15
LINEARITY	120	119.19	119.24	119.22	-0.78	-2.28
	150	148.85	149.04	148.95	-1.06	-2.56
QAmax	180	178.79	178.79	178.79	-1.21	-2.71
3 deg Linearity	210	208.64	208.78	208.71	-1.29	- 2.79
5 deg Total	240	238.58	238.77	238.68	-1.32	-2.82
	270	269.00	269.10	269.05	-0.95	-2.45
Total = Linearity Error	300	299.62	299.62	299.62	-0.38	-1.88
+ Orlentation Error	330	330.33	330.33	330.33	0.33	-1.17
		AVEF	RAGE ERR	OR =	-0.64	-2.14
			MAX ERRO	DR =	1.32	2.82
			QA STATU	JS =	PASS	PASS

		DATAL	OGGER VA	Linearity	TOTAL	
	ANGLE SET	CCW	CW	AVG.	Error	ERROR
	0	n/a	n/a	n/a	n/a	n/a
	30	n/a	n/a	n/a	n/a	n/a
REPLACEMENT	60	n/a	n/a	n/a	n/a	n/a
WIND VANE	90	n/a	n/a	n/a	n/a	n/a
LINEARITY	120	n/a	n/a	n/a	n/a	n/a
	150	n/a	n/a	n/a	n/a	n/a
QAmax	180	n/a	n/a	n/a	n/a	n/a
3 deg Linearity	210	n/a	n/a	n/a	n/a	n/a
5 deg Total	240	n/a	n/a	n/a	n/a	n/a
	270	n/a	n/a	n/a	n/a	n/a
Total = Linearity Error	300	n/a	n/a	n/a	n/a	n/a
+ Orientation Error	330	n/a	n/a	n/a	n/a	n/a
		AVE	RAGE ERR	OR =	n/a	n/a
		MAX ERROR =			n/a	n/a
			QA STAT	JS =	n/a	n/a

HORIZONTAL WIND SPEED

	S/N	3405	3405]
1	direction	(initial)	(final)	
	cw	90	90	
	cw	90	90	
WIND SPEED	cw	90	90	
STARTING TORQUE	cw	70	90]
QAmin = 80 deg	ccw			
	ccw			
	ccw			
1	ccw			
	AVERAGE	85.00	90.00	
{	MIN	70	90	J
	MIN 90deg	FAIL	PASS	judged ok
	AVE 80deg	PASS	PASS	slight imbalance

page 2

INPUT & Acquired Values						
	Time	<u>, </u>	Expecte		1	
	Period	Test	Value	CR10	CR10	
INITIAL (Bench)	(CST)	Rotation	(mph)	Value	stdevWS	
WIND SPEED	1846-1847	0	0.50	0.50	0.02	
ROTATIONAL TESTS	1850-1852	124	6.40	6.40	0.18	
	1858-1900	332	19.73	19.69	0.43	
(Initial Unit, S/N 3405)	1902-1904	626	30.52	30.74	0.23	
	1906-1908	1000	48.46	48.84	0.07	
	Error Analys	sis			•	
			Max			
	Test	Error	Allowed	QASTAT	ļ	
	Rotation	(MPH)	Error		j	
	0	0.00	0.48	PASS	}	
	124	0.00	0.77	PASS	1	
	332	-0.04	1.44	PASS		
1	626	0.22	1.98	PASS		
	1000	0.38	2.87	PASS		
	INPUT & Ac	quired Val				
	Time	1	Expecte			
	Period	Test	Value	CR10	CR10	
FINAL (FIELD)	(CST)	Rotation	(mph)	Value	stdevWS	
WIND SPEED	1654-1655	0	0.50	0.50	0.00	
ROTATIONAL TESTS	1700-1701	125.6	6.52	6.57	0.16	
	1702-1703	317.7	15.74	15.73	0.11	
(Initial Unit, S/N 3405)	1704-1705	615	30.00	29. 9 9	0.10	
	1706-1707	1000	48.46	48.47	0.07	
	Error Analys	sis				
		_	Max			
	Test	Error	Allowed	QASTAT		
	Rotation	(MPH)	Error		ł	
	0	0.00	0.48	PASS		
	125.6	0.05	0.78	PASS		
	317.7	-0.01	1.24	PASS		
	615	-0.01	1.95	PASS		
	1000	0.01	2.87	PASS	1	

SIGMA-THETA

		Bench	Bench	Field	Field
SIGMA-THETA (StDev of WD)		Campbell	Yamartino	Campbell	Yamartino
		S/N 3405	S/N 3405	S/N 3405	S/N 3405
	SET ANGLE (datalogger)	29.59	29.59	29.80	29.80
1	SET ANGLE (datalogger)	329.92	329.92	330.42	330.42
	Indicated Wind Speed		48.84	48.47	48.47
	EXPECTED AUDIT VALUE	29.83	29.83	29.69	29.69
	SYSTEM VALUE	29.33	30.23	29.29	30.19
(QAmax=1deg) ERROR		-0.50	0.40	-0.40	0.50
		PASS	PASS	PASS	PASS

TEMPERATURE

Serial #:	52X5
Standard Height:	2.00 m
Measured Height:	1.78 m
Difference:	-0.22 m
(Tolerance = .5m) QASTAT:	PASS

	BENCH					
			AUDIT	SYSTEM	(degF)	
WATER B	АТН		TEMP	OUTPUT	ERROR	QASTAT
TESTS		low	32.60	32.80	0.20	PASS
(Tolerance =	0.9 degF)	medium	66.70	66.45	-0.25	PASS
		high	87.05	87.15	0.10	PASS

Field					
		AUDIT	SYSTEM	(degF)	
WATER BATH		TEMP	OUTPUT	ERROR	QASTAT
TESTS	low	32.20	32.30	0.10	PASS
(Tolerance = 0.9 degF)	medium	67. 9 0	67.71	-0.19	PASS
	high	81.65	81.74	0.09	PASS

BAROMETRIC PRESSURE

		Bench		Field
	AUDIT PRESSURE:	748.66	mmHg	753.32
ATMOS.	STATION VALUE:	746.21	mmHg	750.96
PRESSURE	ABS DIFFERENCE:	-2.45	mmHg	-2.36
	% DIFFERENCE:	-0.33%		-0.31%
	QASTAT:	PASS		PASS

RELATIVE HUMIDITY

Bench	1			
				RH
		AUDIT	STATION	ERROR
RELATIVE HUMIDITY	Dry B Temp	30.50	31.33	
	Wet B Temp	21.50		
	RH	44.87%	45.87	1.00%
			QASTAT:	PASS

Field	٦			
				RH
		AUDIT	STATION	ERROR
RELATIVE HUMIDITY	Dry B Temp	30.30	31.97	
	Wet B Temp	22.00		
	RH	48.31%	46.54	-1.77%
			QASTAT:	PASS

4.8.2 Grading Adjacent to Ditch 3

The Design Plans depict grading modifications which were to be made in the area adjacent to Ditch 3. Based on the construction layout survey, several cuts were made in this area. Prior to excavating the material, several test pits were excavated, and a composite sample was collected and analyzed as described in Section 4.2.2. The analytical results were below the Performance Standards for topsoil. Following a review of possible uses for this material, including potential onsite and off-site placement locations, EnSafe proposed to place the material in the area from which it had been excavated. EnSafe proposed increasing the slope from the landfill toward Ditch 3, however, the grading intent of the Design Plans would be maintained (see F015 in Appendix C). The material was to be placed in one 8-inch thick lift, and compacted. Compaction would be verified by proof rolling. USEPA approved this use of the cut material, and the work was performed according to EnSafe's proposal to USEPA. Following the placement of this material, topsoil was placed, and fertilizer, seed, and mulch applied as discussed in Section 4.7.

4.8.3 HDPE Well Boot Seals

The Design Plans include a detail drawing which depicts HDPE monitoring well boot seals. According to the notation on the drawing, the seals were to be installed around several monitoring wells/piezometers. The seal construction involves the following:

- One foot of granular bentonite was to be placed above the clay cap around each well.
- The HDPE boot is to be welded to a 3-foot diameter circular piece of HDPE liner, and placed over the protective well cover/piezometer and bentonite.

• The HDPE boot is to be bonded to the protective well cover/piezometer with mastic, and then secured with a clamp.

The intent of this component of the design is to prevent water from infiltrating into the landfill cap through potential voids around the monitoring wells/piezometers located within the clay cap/clay fill area. The Contractor could not locate a mastic which would bond the HDPE material to the metal protective well boxes. Additionally, HDPE boots were not available in a small enough diameter to provide an adequate seal around the 1-inch diameter piezometers.

Alternatively, the Contractor attempted to place a neoprene sleeve between the protective well box and the HDPE boot, which was secured by a clamp. This application was unsuccessful due to the square shape of the protective well box and the round shape of the HDPE boot and the neoprene sleeve. Due to these problems, EnSafe re-evaluated the design of the HDPE boot seals, and determined the following:

- The clay around each well had been well-compacted with a hand-held mechanical tamper.
- The only potential void in the clay cap in the vicinity of each monitoring well was immediately adjacent to the well, therefore, placement of 1 foot of bentonite around each well would be sufficient to prevent infiltration.
- Installation of the HDPE boots as designed would potentially trap water between the HDPE liner and the bentonite seal.

USEPA agreed with the above-listed items, and approved a change in the Design Plans to eliminate the HDPE boot seals, and to only place 1 foot of bentonite around each monitoring well (see F014 in Appendix C). Topsoil was placed on top of the 1-foot thick layer of bentonite around each well as described in Section 4.7.

4.8.4 Aesthetic Modifications

Several modifications were made to the original Design Plans to improve the Brantley Landfill site aesthetically, as well as to improve the future accessibility of the site for O & M activities. These modifications are discussed below.

The Design Plans depict the modified north end landfill cap extending outside the original fenceline. To prevent damage to the cap, and to avoid penetrating the cap with fenceposts, the fenceline was extended outside the modified cap (see F010 in Appendix C).

According to notations on the Design Plans, the gravel access road which is located along the western boundary of the property, inside the fenceline, was to be improved following site activities. The improvement of this road included placing 8-inches of gravel along the entire road. Due to the minimal use that the roadway receives, and the fact that the original road crossed the newly constructed clay cap at the north end, EnSafe proposed to USEPA that the designated roadwork not be performed. USEPA agreed that as long as the site was accessible for O & M, no other improvements would be necessary (see F011 in Appendix C). EnSafe approved the use of No. 610 crusher run limestone (see documentation in Appendix J) to repair and improve the site entrance and parking area immediately inside the gate. Geotextile was placed beneath the limestone inside the gate area. No other road modifications were made.

Due to the raised elevation of the north end landfill cap in the vicinity of monitoring wells K-7S and K-7D, it was necessary to raise the well casings and the protective well boxes to allow the wells to be accessible (see F012 in Appendix C). The original well casing is stainless steel, and the extension casing is PVC pipe of the same diameter. A PVC coupling was placed between the original casing and the extension, and they were secured with sheet metal screws. The original protective well boxes were 4-inch square metal boxes. Six-inch square protective boxes were placed over the 4-inch boxes, and were set in concrete.

5.0 CONCLUSIONS

Based on a review of the tasks included on the Punch Lists, all tasks have been completed in accordance with the *Final Design Report* and/or the *CQAP*. All design modifications implemented throughout the course of the construction phase of the RA were documented and approved, when required, by USEPA. Furthermore, all design modifications were implemented to support the RD/RA objectives. Remaining tasks, as described in the RA Work Plan (June 1997), consist of the following:

- Air monitoring
- Groundwater monitoring
- Post-Remediation operation and maintenance

A one-time monitoring of air emissions will be conducted using open-path Fourier-transform infrared (FTIR) spectroscopy to confirm that ammonia emissions from the landfill to the ambient air have been effectively mitigated or eliminated by the RA construction activities and improvements. This sampling event will be performed when meteorological conditions are conducive to maximizing volatile emission rates. These conditions are defined as warm (temperatures greater than 70° F), sunny, and shortly after a moderate to heavy rainfall.

As stated in the ROD, quarterly groundwater monitoring shall be performed on all piezometers and monitoring wells for one to two years following construction activities. Following the first year of quarterly sampling, the analytical results will be reviewed to assess the need for a second year of quarterly groundwater data. Groundwater samples will be analyzed for the parameters required in the Revised Performance Standards.

The pond will be sampled twice for the same parameters as the groundwater. Upon the receipt of acceptable results, no further sampling will be required from the pond.

Post-remediation O & M on this site will be described in the Site Operations Maintenance Plan, which will be submitted to USEPA following this report. This plan will focus on the maintenance of the landfill cap, surface water management structures, and protection of the site.

Attachment D Site Inspection Attendees List & Meeting Notes

Attachment D Brantley Landfill Five-Year Review

Site Inspection Attendees List				
Name	Organization	Phone Number	Date of Site Visit	
Ginny Gray Davis	EnSafe Inc	513-621-7233	August 8, 2002	
Ken Logsdon	KNREPC , DWM	502-564-6716	August 8, 2002	
Robert Pugh	KNREPC, DWM	502-564-6716	August 8, 2002	
Kevin D Conkright	Commonwealth Industries	270-733-1212 Ext 5	August 8, 2002	
Roger Burden	Commonwealth Industries	270-733-1212 Ext 7	August 8, 2002	
Damon Smith	Commonwealth Industries	270-733-1212 Ext 4	August 8, 2002	
Sandra English	Commonwealth Industries	270-733-1212 Ext 1	August 8, 2002	
Harold Taylor	USEPA Region IV	404-562-8791	April 22, 2002	
Femi Akindele	USEPA Region IV	404-562-8809	April 22, 2002	
Roger Burden	Commonwealth Industries	270-733-1212 Ext 7	April 22, 2002	
Damon R Smith	Commonwealth Industries	270-733-1212 Ext 4	April 22, 2002	

Please note that "O&M" is referred to throughout this checklist. At sites where Long-Term Response Actions are in progress, O&M activities may be referred to as "system operations" since these sites are not considered to be in the O&M phase while being remediated under the Superfund program.

Five-Year Review Site Inspection Checklist (Template)

(Working document for site inspection. Information may be completed by hand and attached to the Five-Year Review report as supporting documentation of site status. "N/A" refers to "not applicable.")

I. SITE INFORMATION				
Site name: Brantley Randfill	Date of inspection: 8 8 02			
Location and Region:	EPAID: KY			
Agency, office, or company leading the five-year review: EnSafe-Inc. & CAC	Weather/temperature: Sunny, ' dear 89° F			
✓ Access controls	Monitored natural attenuation Groundwater containment Vertical barrier walls			
Attachments: Inspection team roster attached	✓ Site map attached			
H. INTERVIEWS	(Check all that apply)			
1. O&M site manager <u>Mr. Roger Burden</u> Name Interviewed at site at office by phone Phon Problems, suggestions; Report attached	ue no.(<u>2:4</u> 2)			
2. O&M staff <u>Mr. Kevin (Lonkright</u> <u>M</u> . Name Interviewed <u>at site</u> at office by phone Phon Problems, suggestions; Report attached	e no. (270)			

3.	Local regulatory authorities and response agencies (i.e., State and Tribal offices, emergency response office, police department, office of public health or environmental health, zoning office, recorder of deeds, or other city and county offices, etc.) Fill in all that apply.					
	Agency <u>KNREPC</u> , <u>Div.</u> of Waste N Contact <u>Mr. Ken Lagedon</u> Name Problems; suggestions; Report attached	Ignit. PM Tille	<u>5 5 02</u> (¹ Date	5 <u>94) 544 - 6416</u> Phone no.		
	Agency KNREPCE, Div. of Wasto Mar Contact <u>Mr. Robert Pugh</u> Name Problems; suggestions; Report attached	H. PM Title	<u>3 3 02</u> (Date	5 <u>02)564-6416</u> Phone no.		
	Agency Contact Name Problems; suggestions; Report attached	Title	Date	Phone no.		
	Agency Contact Name Problems; suggestions; Report attached	Title	Date	Phone no.		
4.	Other interviews (optional) Report attached	ł.	····			

÷

	HI. ON-SITE DOCUMENTS &	RECORDS VERIFIED (C	Check all that app	ly)
1.	O&M Documents O&M manual As-built drawings Maintenance logs Remarks EnSate reviewed all the cibe	Readily available Readily available Readily available and inspections 1	Up to date Up to date Up to date	N/A N/A N/A
2.	Site-Specific Health and Safety Plan Contingency plan/emergency respons Remarks	Readily available	Up to date	N/A N/A
3.	O&M and OSHA Training Records Remarks	Readily available	Up to date	N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits Remarks		Up to date Up to date Up to date Up to date	N/A N/A N/A N/A
5.	Gas Generation Records Ro Remarks	-	o date N/A	>
6.	Settlement Monument Records Remarks	Readily available	Up to date	N/A
7.	Groundwater Monitoring Records Remarks	Readily available	Up to date	N/A
8.	Leachate Extraction Records Remarks	Readily available	Up to date	N/A
9.	Discharge Compliance Records Air Water (effluent)	Readily available Readily available	Up to date Up to date	(N/A) (N/A)
	Remarks			

OSWER No. 9355.7-03B-P

.

				IV. O&M COSTS		
1.	O&M Organiz State in-hous PRP in-hous Federal Faci Other	se e lity in-ho			l Facility	
2.	O&M Cost Re Readily avai Funding mec Original O&M	lable hanism/a	Up to agreement i. mate		akdown attached	
		Toi	al annual co	st by year for review per	iod if available	
	From	To			Breakdown attached	
	Date From		Date	Total cost	Breakdown attached	
	Date From	То		Total cost	Breakdown attached	
	Date From	To		Total cost	Breakdown attached	
	Date From Date	To	Date Date	Total cost	Breakdown attached	
3.				O&M Costs During R	eview Period	
	···	CESS A	ND INSTI	FUTIONAL CONTRO	LS Applicable N/A	
A. Fe	encing					
Ι.	Fencing damag Remarks	-	Locati	on shown on site map	Gates secured	N/A
B. Ot	her Access Restri	ctions				
1.	Signs and other Remarks 5			s (Location sho pusted @ front	wn on site map N/A Gate.	

C. Ins	titutional Controls (ICs)		
1.	Implementation and enforcement Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced Type of monitoring (e.g., self-reporting, drive by) Frequency Responsible party/agency) N/A) N/A
	Contact		
	Name Title	Date	Phone no.
	Reporting is up-to-date Reports are verified by the lead agency	Yes No Yes No	N/A N/A
	Specific requirements in deed or decision documents have been met Violations have been reported Other problems or suggestions: Report attached	Yes No Yes No) N/A N/A
	Deed restrictions have not been completed to da	-tε,	
2.	Adequacy ICs are adequate ICs are inadeq Remarks		N/A
D. Gei	neral		
1.	Vandalism/trespassing Location shown on site map No va Remarks One incident has occurred in 1999 where rom Or M equipment parked over night on site.	ndalism evident Dallanie s. 1.3	
2.	Land use changes on site N/A Remarks		
3.	Land use changes off site N/A Remarks		
	VI. GENERAL SITE CONDITIONS		- · · · <u>-</u>
A. Roa	ids Applicable (N/A)		
1.		s adequate	N/A

ŀ

Remarks	licable N/A
	lighta N/A
A. Landfill Surface	
Settlement (Low spots) Location shown on s Areal extent Depth	
Remarks <u>Lundfill grade was still con</u> <u>construction</u> as builts.	sietent 10/
2. Cracks Location shown on s Lengths Widths Depths Remarks	ite map Cracking not evident
3. Erosion Location shown on s Areal extent Depth Remarks	Erosion not evident
4. Holes Location shown on s Areal extent Depth Remarks Some very small holes noted a animales Sei photo log.	•
	discrete areas due to lack
6. Alternative Cover (armored rock, concrete, etc.) Remarks	N/A
7. Bulges Location shown on st Areal extent Height Remarks	te map Bulges not evident

*

			OSWER No. 9355.7-03B-P
8.	Wet Areas/Water Damage Wet areas Ponding Seeps Soft subgrade Remarks	Wet areas/water damage not e Location shown on site map Location shown on site map Location shown on site map Location shown on site map	vident Areal extent Areal extent Areal extent Areal extent
9.	Slope Instability Slides Areal extent Remarks	Location shown on site map	No evidence of slope instability
В.		N/A s of earth placed across a steep land y of surface runoff and intercept and	If ill side slope to interrupt the slope d convey the runoff to a lined
}.	Flows Bypass Bench Remarks	Location shown on site map	N/A or okay
2.	Bench Breached Loc: Remarks	ntion shown on site map	N/A or okay
3.		Location shown on site map	N/A or okay
C.		N/A ol mats, riprap, grout bags, or gabic low the runoff water collected by the ision gullies.)	
1.	Settlement Loca Areal extent Remarks	ntion shown on site map No Depth	evidence of settlement
2.	Material Degradation Loc: Material type Remarks	Areal extent	evidence of degradation
3.	Erosion Loca Areal extent Remarks	Depth	evidence of erosion

e

OSWER No. 9355.7-03B-P

4.	Undercutting Location shown on site map No evidence of undercutting Areal extent Depth No evidence of undercutting Remarks
5.	Obstructions Type No obstructions Location shown on site map Areal extent
6.	Excessive-Vegetative Growth Type No evidence of excessive growth Type Vegetation in channels does not obstruct flow Location shown on site map Areal extent Areal extent
D. Co	wer Penetrations (Applicable) N/A
1.	Gas Vents Active Passive Properly secured/locked Functioning Routinely sampled Good condition Evidence of leakage at penetration Needs Maintenance N/A Remarks
2.	Gas Monitoring Probes Properly secured/locked Functioning Routinely sampled Good condition Evidence of leakage at penetration Needs Maintenance N/A Remarks
3.	Monitoring Wells (within surface area of landfill). Properly secured/locked Functioning Routinely sampled Good condition Evidence of leakage at penetration Needs Maintenance N/A Remarks Outer casing deterioration & well J1.2.5. [2] and to replace underway.
4.	Leachate Extraction Wells Properly secured/locked Functioning Routinely sampled Good condition Evidence of leakage at penetration Needs Maintenance N/A Remarks
5.	Settlement Monuments Located Routinely surveyed N/A Remarks

E. Ga	s Collection and Treatment	Applicable	(N/A)	
1.	Gas Treatment Facilities Flaring Good condition Remarks	Thermal destruction Needs Maintenance	Collection for reuse	
2.	Gas Collection Wells, Mar Good condition Remarks	Needs Maintenance		
3.	Remarks	Needs Maintenance	N/A	s)
F. Cov	ver Drainage Layer	Applicable	(N/A)	
1.	Outlet Pipes Inspected Remarks	Functioning	N/A	
2.	Outlet Rock Inspected Remarks	Functioning	N/A	
G. De	tention/Sedimentation Ponds	Applicable	N/A	
1.	Siltation Areal extent Siltation not evident Remarks	Depth		N/A
2.	Erosion Arcal exte Erosion not evident Remarks			
3.	Outlet Works Remarks	Functioning N/A)	
4.	Dam Remarks	Functioning (N/A)	

OSWER No. 9355.7-03B-P

H. R	etaining Walls	Applicable (N/A)
1.	Horizontal displacement Rotational displacement	
2.	0	Location shown on site map Degradation not evident
I. Per	imeter Ditches/Off-Site Disc	harge Applicable N/A
1.	Siltation Location	n shown on site map Siliation not evident Depth
, 2.	Vegetation does not impo Areal extent	Location shown on site map N/A rde flow Type
3.	Areal extent	Location shown on site map Erosion not evident
4.	Discharge Structure Remarks	
	VIII. VERTI	CAL BARRIER WALLS Applicable N/A
1.	Settlement Areal extent Remarks	•
2.	Performance not monitor Frequency Head differential	Evidence of breaching

.

OSWER No.	9355.	7-0	3B-P
-----------	-------	-----	------

	IX. GROUNDWATER/SURFACE WATER REMEDIES Applicable
A. G	roundwater Extraction Wells, Pumps, and Pipelines Applicable (N/A)
1.	Pumps, Wellhead Plumbing, and Electrical Good condition All required wells properly operating Needs Maintenance Remarks
2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition Needs Maintenance Remarks
3.	Spare Parts and Equipment Readily available Good condition Requires upgrade Needs to be provided Remarks
B. Su	rface Water Collection Structures, Pumps, and Pipelines Applicable N/A
1.	Collection Structures, Pumps, and Electrical Good condition Needs Maintenance Remarks
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition Needs Maintenance Remarks
3.	Spare Parts and Equipment Readily available Good condition Requires upgrade Needs to be provided Remarks

.

C.	Treatment System	Applicable	(N/A)					
1.	Others Good condition Sampling ports prop Sampling/maintenan Equipment properly Quantity of groundw	Oil/wa Carbo tion agent, flocculent) Needs erly marked and funct ce log displayed and u identified rater treated annually_ vater treated annually	nter separation n adsorbers Maintenance ional up to date					
2.		and Panels (properly bod condition	Needs Maintenan					
3.	Tanks, V aults, Storag (N/A) Go Reinarks	od condition			Needs Maintenance			
4.	Discharge Structure a N/A Gc Remarks	od condition						
5.	Treatment Building(s (N/A) Gc Chemicals and equip Remarks	od condition (esp. roc ment properly stored		Needs n	epair			
6.	All required wells lo	ked (Functioning)	Routinely sample Mainténance	· · ·	N/A			
D. I	D. Monitoring Data							
1.	Monitoring Data	submitted on time	Is of acceptat	ole quality				
2.	Monitoring data sugges Groundwater plume	ts: s effectively containe	d Contaminant	concentrations ar	e declining			

,

D .	Monitored Natural Attenuation					
1.	Monitoring Wells (natural attenuation remedy) Properly secured/locked Functioning All required wells located Needs Maintenance N/A Remarks					
	X. OTHER REMEDIES					
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.					
	XI. OVERALL OBSERVATIONS					
А.	Implementation of the Remedy					
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).					
	······································					
B.	Adequacy of O&M					
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.					

•

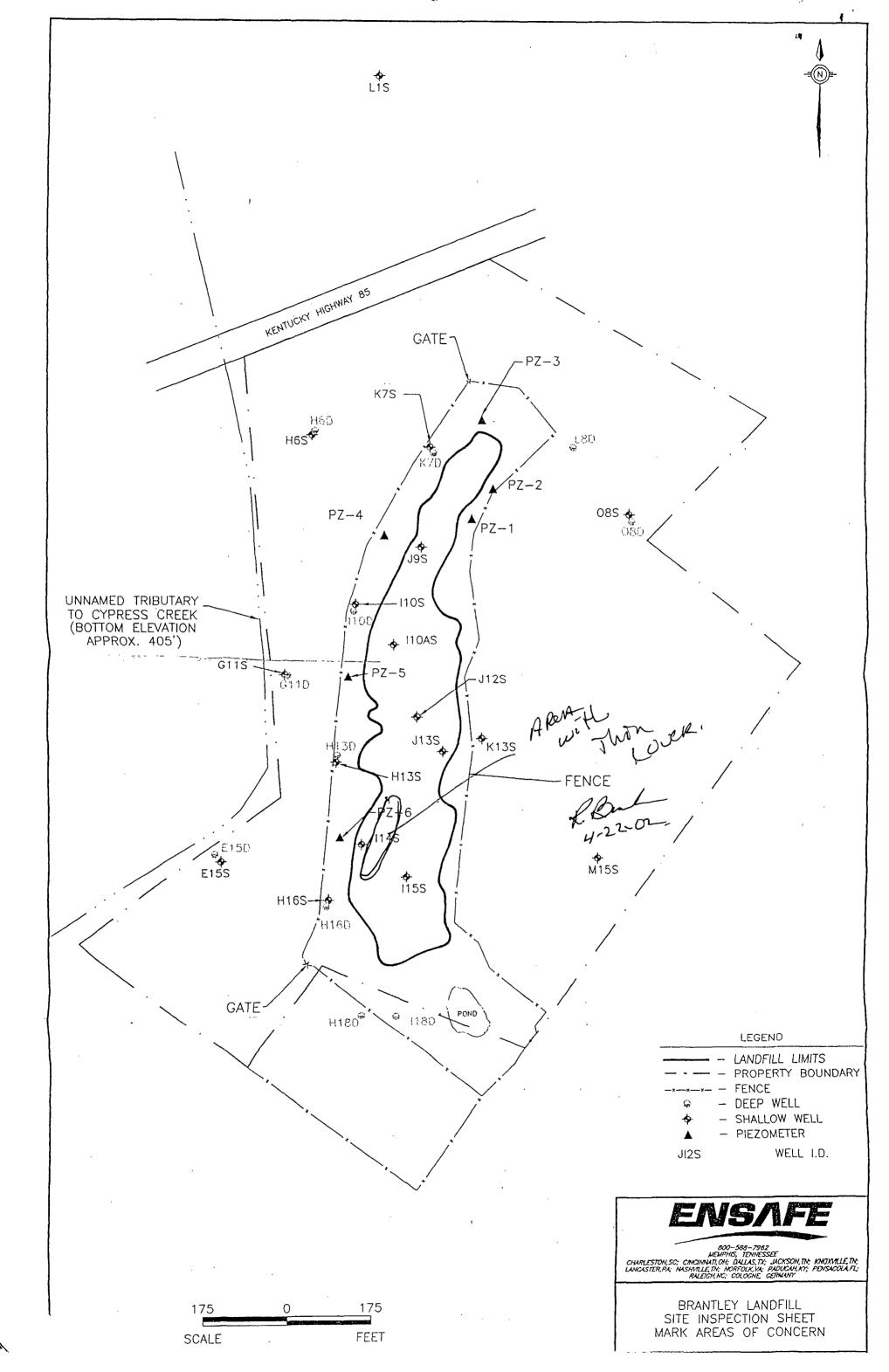
C.	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.
D.	Opportunities for Optimization
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.

•

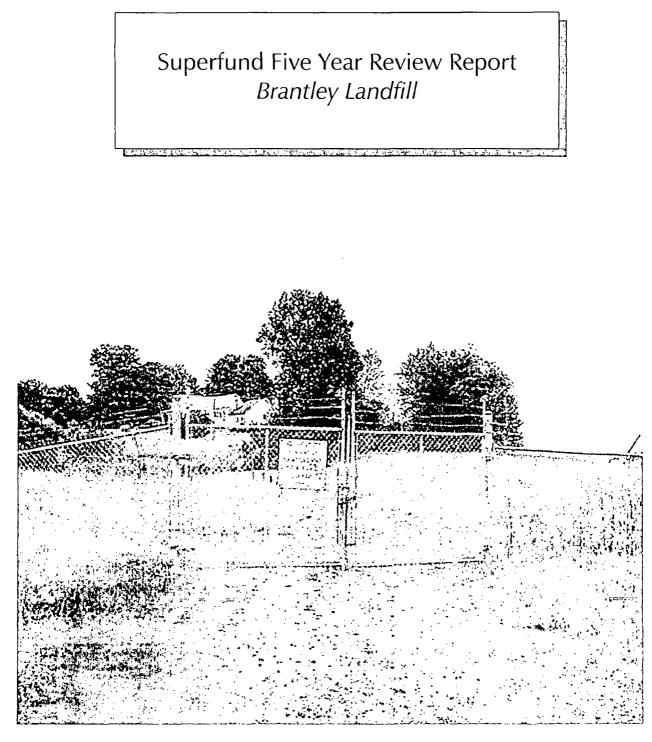
SAMPLE OXM INSPECTION SHEET

INSPECTION CHECKLIST

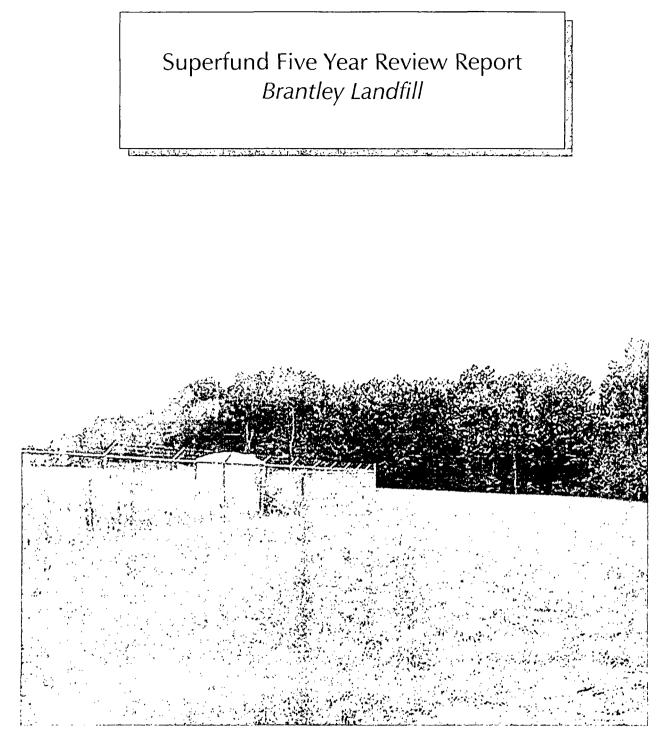
Date April 22, 2002 Weather <u>Clere</u>

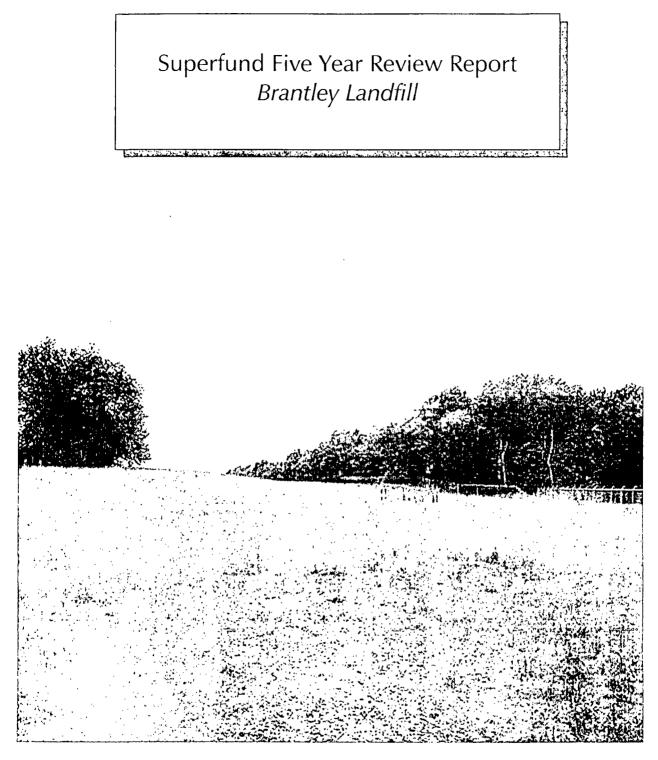

Personnel onsite

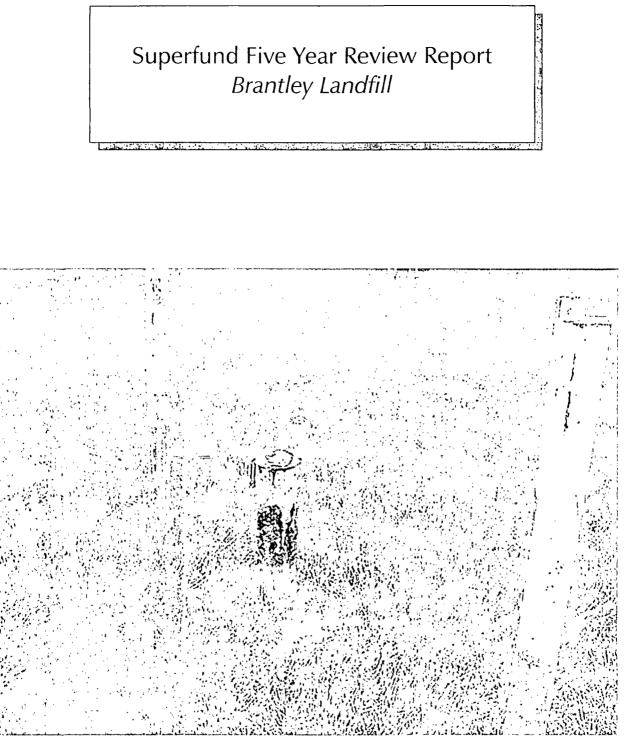
Roger Burday chuck Kreekt, Kevin Conkight, NAT John Jent, Hurold Tuylor, Femi AtinDelz-Peters,

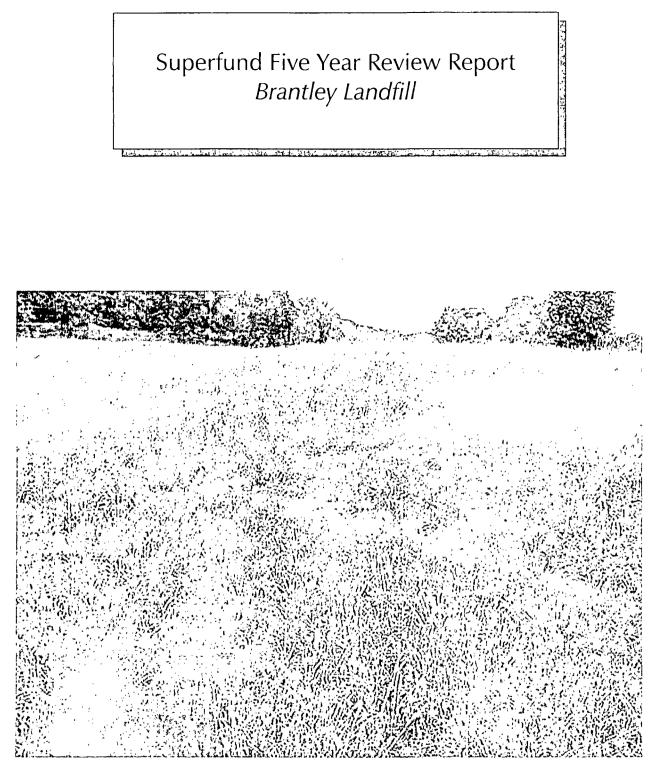

Check yes or no as each task/condition is inspected. Note all observed conditions for which 'Yes' was marked. Attach additional pages if required.

Area	Conditions	YES	NO
Fenceline Inspection Damage, unlocked gates, areas in r other repairs		•	
North End Cap	Erosion		
	Stressed Vegetation		
	Odors		4
Interior Area	Erosion		
	Stressed Vegetation		
	Odors		
Ditch 1, 2, and/or 3	Erosion		
	Ponding		~
	Straw Bales - silt buildup, damaged		
	Riprap - dislocated, silt buildup		
Southern Slope	Erosion		
	Stressed Vegetation		
	Riprap - displaced, silt buildup		
Site Entrance	Gravel road in need of repair		
Cleared Western Area	Erosion		
	Stressed Vegetation		
Site Wide	Any other conditions noted		


Comments: Brohns. arrived at Site. WALKEL Site + review for identified on Inspection checklist · Fam D. ARCA ON South 2nd ON Western Slope with this vegetation. * See Attached MAP. 1855 hrs ... DEPART from Site **Problems/Solutions:** Thans are to Re-seed this AREA - A Note Drill . This will be Less invasive. с**л**.


Attachment E Site Inspection Photos


Photograph 1 — Entrance gate to Site. Contact numbers for emergencies/information provided.

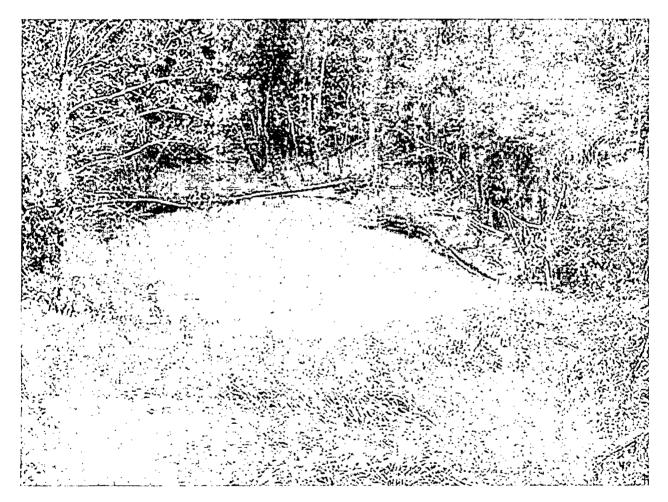

Photograph 2 – Groundwater investigation-derived waste tank along northern fence line.

Photograph 3 — View of landfill facing south (inside property boundary).

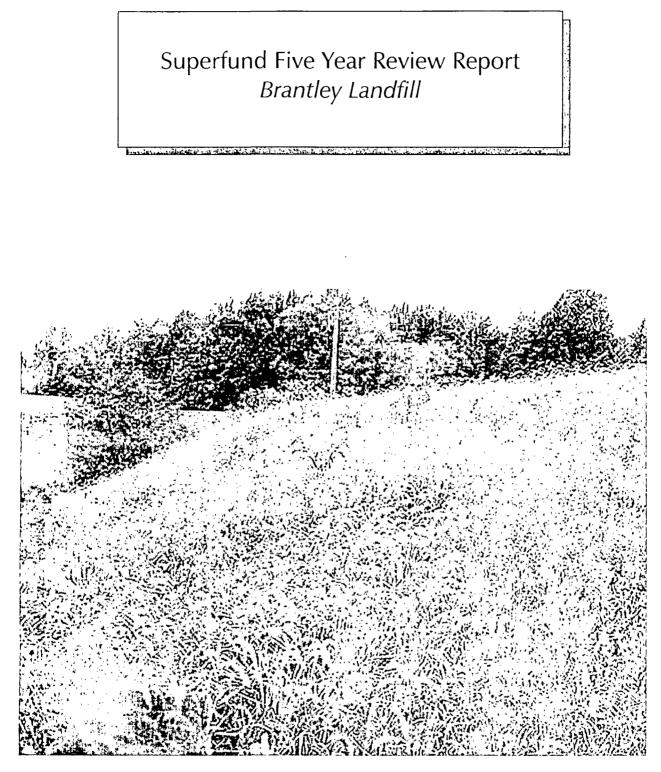
Photograph 4 – Protective outer casing corrosion at groundwater monitoring well location J12S.

Photograph 5 – Area to be reseeded in Fall 2002.

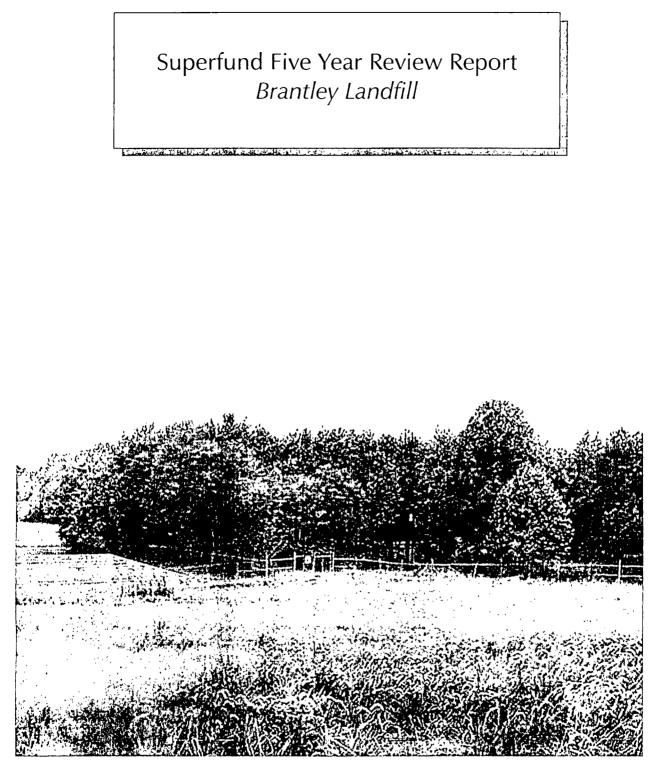
Superfund Five Year Review Report Brantley Landfill

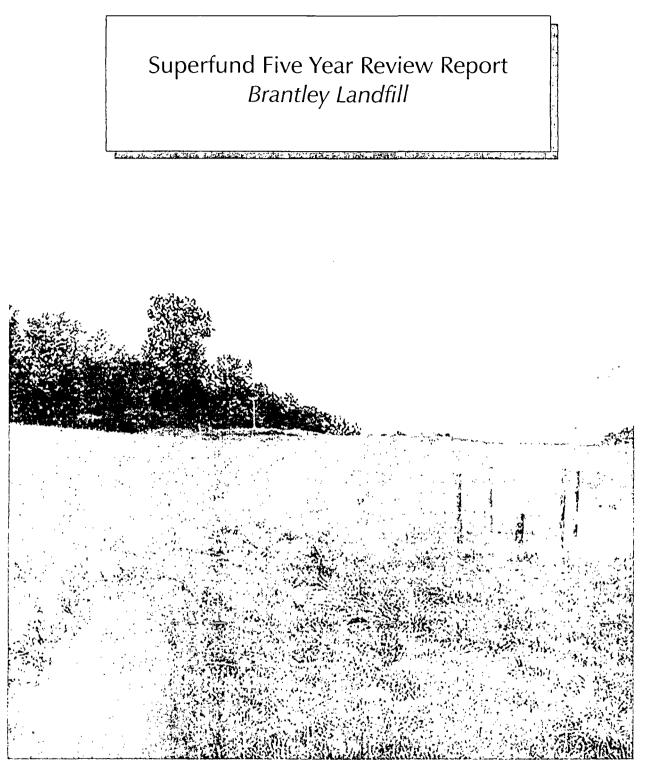

Photograph 6 – Bare area to be reseeded in Fall 2002.

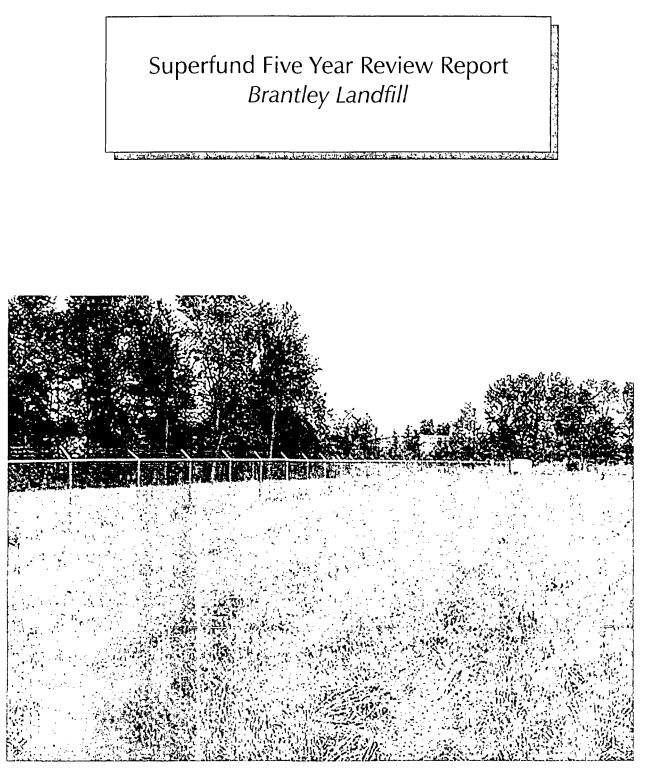
Superfund Five Year Review Report Brantley Landfill



Photograph 7 – Area to be reseeded on southern slope of the landfill in Fall 2002.


Superfund Five Year Review Report Brantley Landfill


Photograph 8 – Stormwater retention basin at southern end of landfill.


Photograph 9 — Southern slope of landfill. Wastewater treatment plant at left of picture.

Photograph 10 – Southwestern construction gate and site fence.

Photograph 11 – Northern perimeter of landfill. Monitoring well ____ at right of picture.

Photograph 12 – Western perimeter fencing at site facing North.