CLU-IN Home

U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Search Result from the January 2007 Issue

| Return to Search | Return to Results |

BIOREMEDIATION OF A MINERAL SOIL WITH HIGH CONTENTS OF CLAY AND ORGANIC MATTER CONTAMINATED WITH HERBICIDE 2,4-DICHLORO- PHENOXYACETIC ACID USING SLURRY BIOREACTORS: EFFECT OF ELECTRON ACCEPTOR AND SUPPLEMENTATION WITH AN ORGANIC CARBON SOURCE
Robles-Gonzalez, I. (CINVESTAV-IPN, Mexico); E. Rios-Leal; R. Ferrera-Cerrato; F. Esparza-Garcia; N. Rinderkenecht-Seijas; H.M. Poggi-Varaldo. Process Biochemistry, Vol 41 No 9, p 1951-1960, Sep 2006

The removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from an agricultural mineral soil containing organic matter (4%) and clay (48%) was evaluated in lab-scale slurry bioreactors under aerobic and anaerobic (sulfate-reducing) conditions, both with and without an additional carbon source (sucrose). The soil was sterilized and spiked with 300 mg 2,4-D/kg dry matrix prior to introduction to the slurry bioreactors, both of which received bacteria (20%, v/v) acclimated to 2,4-D from aerobic and sulfate-reducing continuous complete-mix reactors. The investigators found that aerobic conditions were more favorable for the degradation of 2,4-D in terms of the overall removal efficiency (93%) compared to 25% under sulfate-reducing conditions during a 14-day treatment period, but the specific removal rate in the sulfate-reducing bioreactor was significantly higher than that in the aerobic bioreactor. This difference was attributed to the fact that the aerobic inoculum was much denser than the sulfate-reducing inoculum. Aerobic removal was not affected by the sucrose supplementation, whereas the sulfate-reducing bioreactor removed 2,4-D to a slightly greater extent with sucrose than without. Overall, the slurry bioreactor bioremediation technique achieved effective removal of the herbicide from mineral agricultural soils characterized by a fine texture and high content of organic matter.



The Technology Innovation News Survey welcomes your comments and suggestions, as well as information about errors for correction. Please contact Michael Adam of the U.S. EPA Office of Superfund Remediation and Technology Innovation at adam.michael@epa.gov or (703) 603-9915 with any comments, suggestions, or corrections.

Mention of non-EPA documents, presentations, or papers does not constitute a U.S. EPA endorsement of their contents, only an acknowledgment that they exist and may be relevant to the Technology Innovation News Survey audience.